Step * 1 1 3 1 2 of Lemma cut-of-singleton


1. Info Type@i'
2. es EO+(Info)@i'
3. EClass(Top)@i'
4. sys-antecedent(es;X)@i
5. E(X)@i
6. ∀[s:fset(E(X))]. (s ⊆ cut(X;f;s) ∧ (∀[c':Cut(X;f)]. cut(X;f;s) ⊆ c' supposing s ⊆ c'))
7. {f e} ⊆ cut(X;f;{f e})
8. ∀[c':Cut(X;f)]. cut(X;f;{f e}) ⊆ c' supposing {f e} ⊆ c'
9. {e} ⊆ cut(X;f;{e})
10. ∀[c':Cut(X;f)]. cut(X;f;{e}) ⊆ c' supposing {e} ⊆ c'
11. ¬↑e ∈b prior(X)
12. (f e) e ∈ E
13. cut(X;f;{e}) ⊆ {}+e
⊢ cut(X;f;{e}) ⊆ {e}
BY
(NthHypEq (-1) THEN EqCD THEN Auto) }


Latex:



Latex:

1.  Info  :  Type@i'
2.  es  :  EO+(Info)@i'
3.  X  :  EClass(Top)@i'
4.  f  :  sys-antecedent(es;X)@i
5.  e  :  E(X)@i
6.  \mforall{}[s:fset(E(X))].  (s  \msubseteq{}  cut(X;f;s)  \mwedge{}  (\mforall{}[c':Cut(X;f)].  cut(X;f;s)  \msubseteq{}  c'  supposing  s  \msubseteq{}  c'))
7.  \{f  e\}  \msubseteq{}  cut(X;f;\{f  e\})
8.  \mforall{}[c':Cut(X;f)].  cut(X;f;\{f  e\})  \msubseteq{}  c'  supposing  \{f  e\}  \msubseteq{}  c'
9.  \{e\}  \msubseteq{}  cut(X;f;\{e\})
10.  \mforall{}[c':Cut(X;f)].  cut(X;f;\{e\})  \msubseteq{}  c'  supposing  \{e\}  \msubseteq{}  c'
11.  \mneg{}\muparrow{}e  \mmember{}\msubb{}  prior(X)
12.  (f  e)  =  e
13.  cut(X;f;\{e\})  \msubseteq{}  \{\}+e
\mvdash{}  cut(X;f;\{e\})  \msubseteq{}  \{e\}


By


Latex:
(NthHypEq  (-1)  THEN  EqCD  THEN  Auto)




Home Index