Step
*
1
of Lemma
decidable__equal_consensus-rcv
1. [V] : Type
2. ∀v,w:V. Dec(v = w ∈ V)@i
3. A : Id List@i
4. x : V + ({b:Id| (b ∈ A)} × ℕ × V)@i
5. y : V + ({b:Id| (b ∈ A)} × ℕ × V)@i
⊢ Dec(x = y ∈ (V + ({b:Id| (b ∈ A)} × ℕ × V)))
BY
{ (BLemma `decidable__equal_union` THEN Try (Trivial)) }
1
.....wf.....
1. V : Type
2. ∀v,w:V. Dec(v = w ∈ V)@i
3. A : Id List@i
4. x : V + ({b:Id| (b ∈ A)} × ℕ × V)@i
5. y : V + ({b:Id| (b ∈ A)} × ℕ × V)@i
⊢ {b:Id| (b ∈ A)} × ℕ × V ∈ Type
2
1. [V] : Type
2. ∀v,w:V. Dec(v = w ∈ V)@i
3. A : Id List@i
4. x : V + ({b:Id| (b ∈ A)} × ℕ × V)@i
5. y : V + ({b:Id| (b ∈ A)} × ℕ × V)@i
⊢ ∀u,v:{b:Id| (b ∈ A)} × ℕ × V. Dec(u = v ∈ ({b:Id| (b ∈ A)} × ℕ × V))
Latex:
1. [V] : Type
2. \mforall{}v,w:V. Dec(v = w)@i
3. A : Id List@i
4. x : V + (\{b:Id| (b \mmember{} A)\} \mtimes{} \mBbbN{} \mtimes{} V)@i
5. y : V + (\{b:Id| (b \mmember{} A)\} \mtimes{} \mBbbN{} \mtimes{} V)@i
\mvdash{} Dec(x = y)
By
(BLemma `decidable\_\_equal\_union` THEN Try (Trivial))
Home
Index