Step
*
of Lemma
eclass-cond-classrel
∀[Info,B:Type]. ∀[X:EClass(B ─→ B)]. ∀[Y:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:B].
uiff(v ∈ eclass-cond(X;Y)(
e);↓if e ∈b X then ∃f:B ─→ B. ∃b:B. (f ∈ X(e) ∧ b ∈ Y(e) ∧ (v = (f b) ∈ B)) else v ∈ Y(e) fi )
BY
{ Auto }
1
1. Info : Type
2. B : Type
3. X : EClass(B ─→ B)
4. Y : EClass(B)
5. es : EO+(Info)
6. e : E
7. v : B
8. v ∈ eclass-cond(X;Y)(e)
⊢ ↓if e ∈b X then ∃f:B ─→ B. ∃b:B. (f ∈ X(e) ∧ b ∈ Y(e) ∧ (v = (f b) ∈ B)) else v ∈ Y(e) fi
2
1. Info : Type
2. B : Type
3. X : EClass(B ─→ B)
4. Y : EClass(B)
5. es : EO+(Info)
6. e : E
7. v : B
8. ↓if e ∈b X then ∃f:B ─→ B. ∃b:B. (f ∈ X(e) ∧ b ∈ Y(e) ∧ (v = (f b) ∈ B)) else v ∈ Y(e) fi
⊢ v ∈ eclass-cond(X;Y)(e)
Latex:
\mforall{}[Info,B:Type]. \mforall{}[X:EClass(B {}\mrightarrow{} B)]. \mforall{}[Y:EClass(B)]. \mforall{}[es:EO+(Info)]. \mforall{}[e:E]. \mforall{}[v:B].
uiff(v \mmember{} eclass-cond(X;Y)(e);\mdownarrow{}if e \mmember{}\msubb{} X
then \mexists{}f:B {}\mrightarrow{} B. \mexists{}b:B. (f \mmember{} X(e) \mwedge{} b \mmember{} Y(e) \mwedge{} (v = (f b)))
else v \mmember{} Y(e)
fi )
By
Auto
Home
Index