Nuprl Lemma : eclass-cond-classrel

[Info,B:Type]. ∀[X:EClass(B ─→ B)]. ∀[Y:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:B].
  uiff(v ∈ eclass-cond(X;Y)(
           e);↓if e ∈b then ∃f:B ─→ B. ∃b:B. (f ∈ X(e) ∧ b ∈ Y(e) ∧ (v (f b) ∈ B)) else v ∈ Y(e) fi )


Proof




Definitions occuring in Statement :  eclass-cond: eclass-cond(X;Y) classrel: v ∈ X(e) member-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E ifthenelse: if then else fi  uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  classrel_wf eclass-cond_wf squash_wf member-eclass_wf bool_wf eqtt_to_assert exists_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot es-E_wf event-ordering+_subtype event-ordering+_wf eclass_wf bool_cases assert_of_bnot uiff_transitivity equal-wf-T-base assert_wf bnot_wf not_wf eclass3-classrel sq_stable__classrel
\mforall{}[Info,B:Type].  \mforall{}[X:EClass(B  {}\mrightarrow{}  B)].  \mforall{}[Y:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:B].
    uiff(v  \mmember{}  eclass-cond(X;Y)(e);\mdownarrow{}if  e  \mmember{}\msubb{}  X
                                                                then  \mexists{}f:B  {}\mrightarrow{}  B.  \mexists{}b:B.  (f  \mmember{}  X(e)  \mwedge{}  b  \mmember{}  Y(e)  \mwedge{}  (v  =  (f  b)))
                                                                else  v  \mmember{}  Y(e)
                                                                fi  )



Date html generated: 2015_07_17-PM-00_38_19
Last ObjectModification: 2015_01_27-PM-11_14_41

Home Index