Nuprl Lemma : eclass3-classrel
∀[Info,B,C:Type]. ∀[X:EClass(B ─→ C)]. ∀[Y:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
  uiff(v ∈ eclass3(X;Y)(e);↓∃f:B ─→ C. ∃b:B. (f ∈ X(e) ∧ b ∈ Y(e) ∧ (v = (f b) ∈ C)))
Proof
Definitions occuring in Statement : 
eclass3: eclass3(X;Y)
, 
classrel: v ∈ X(e)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
bag-member_wf, 
exists_wf, 
squash_wf, 
class-ap_wf, 
bag-combine_wf, 
bag-map_wf, 
uiff_wf, 
classrel_wf, 
eclass3_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
eclass_wf, 
iff_transitivity, 
iff_weakening_uiff, 
bag-member-combine, 
bag-member-map
\mforall{}[Info,B,C:Type].  \mforall{}[X:EClass(B  {}\mrightarrow{}  C)].  \mforall{}[Y:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:C].
    uiff(v  \mmember{}  eclass3(X;Y)(e);\mdownarrow{}\mexists{}f:B  {}\mrightarrow{}  C.  \mexists{}b:B.  (f  \mmember{}  X(e)  \mwedge{}  b  \mmember{}  Y(e)  \mwedge{}  (v  =  (f  b))))
Date html generated:
2015_07_17-PM-00_37_31
Last ObjectModification:
2015_01_27-PM-11_15_30
Home
Index