Nuprl Lemma : eclass3-classrel

[Info,B,C:Type]. ∀[X:EClass(B ─→ C)]. ∀[Y:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
  uiff(v ∈ eclass3(X;Y)(e);↓∃f:B ─→ C. ∃b:B. (f ∈ X(e) ∧ b ∈ Y(e) ∧ (v (f b) ∈ C)))


Proof




Definitions occuring in Statement :  eclass3: eclass3(X;Y) classrel: v ∈ X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  bag-member_wf exists_wf squash_wf class-ap_wf bag-combine_wf bag-map_wf uiff_wf classrel_wf eclass3_wf es-E_wf event-ordering+_subtype event-ordering+_wf eclass_wf iff_transitivity iff_weakening_uiff bag-member-combine bag-member-map
\mforall{}[Info,B,C:Type].  \mforall{}[X:EClass(B  {}\mrightarrow{}  C)].  \mforall{}[Y:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:C].
    uiff(v  \mmember{}  eclass3(X;Y)(e);\mdownarrow{}\mexists{}f:B  {}\mrightarrow{}  C.  \mexists{}b:B.  (f  \mmember{}  X(e)  \mwedge{}  b  \mmember{}  Y(e)  \mwedge{}  (v  =  (f  b))))



Date html generated: 2015_07_17-PM-00_37_31
Last ObjectModification: 2015_01_27-PM-11_15_30

Home Index