Nuprl Lemma : bag-member-combine

[A,B:Type]. ∀[bs:bag(A)]. ∀[f:A ⟶ bag(B)]. ∀[b:B].  uiff(b ↓∈ ⋃x∈bs.f[x];↓∃x:A. (x ↓∈ bs ∧ b ↓∈ f[x]))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-combine: x∈bs.f[x] bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] exists: x:A. B[x] squash: T and: P ∧ Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} uiff: uiff(P;Q) squash: T bag-member: x ↓∈ bs int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) empty-bag: {} bag-combine: x∈bs.f[x] bag-size: #(bs) bag-map: bag-map(f;bs) bag-union: bag-union(bbs) concat: concat(ll) iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) length: ||as|| list_ind: list_ind bag-append: as bs append: as bs single-bag: {x} cons: [a b] nil: [] it: true: True sq_or: a ↓∨ b cand: c∧ B
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than int_seg_properties int_seg_wf subtract-1-ge-0 decidable__equal_int subtract_wf subtype_base_sq set_subtype_base int_subtype_base intformnot_wf intformeq_wf itermSubtract_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma decidable__le decidable__lt istype-le subtype_rel_self bag-cases itermAdd_wf int_term_value_add_lemma istype-nat bag-size_wf bag_wf istype-universe length_of_nil_lemma map_nil_lemma reduce_nil_lemma squash_wf false_wf bag-member_wf iff_weakening_uiff empty-bag_wf bag-member-empty-iff le_wf uiff_wf bag-combine_wf sq_stable__all sq_stable__uiff sq_stable__bag-member sq_stable__squash equal-wf-base subtract_nat_wf add-is-int-iff bag-combine-single-left true_wf bag-combine-append-left single-bag_wf iff_weakening_equal sq_or_wf bag-member-append bag-append_wf bag-member-single
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType productElimination independent_pairEquality imageElimination imageMemberEquality baseClosed isectIsTypeImplies inhabitedIsType functionIsTypeImplies unionElimination applyEquality instantiate because_Cache equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality_alt productIsType hypothesis_subsumption addEquality functionIsType universeEquality productEquality promote_hyp hyp_replacement functionEquality intEquality equalityIstype pointwiseFunctionality baseApply closedConclusion inlFormation_alt unionEquality inrFormation_alt

Latex:
\mforall{}[A,B:Type].  \mforall{}[bs:bag(A)].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].  \mforall{}[b:B].
    uiff(b  \mdownarrow{}\mmember{}  \mcup{}x\mmember{}bs.f[x];\mdownarrow{}\mexists{}x:A.  (x  \mdownarrow{}\mmember{}  bs  \mwedge{}  b  \mdownarrow{}\mmember{}  f[x]))



Date html generated: 2019_10_15-AM-11_01_38
Last ObjectModification: 2019_06_25-PM-03_26_03

Theory : bags


Home Index