Nuprl Lemma : bag-member-combine
∀[A,B:Type]. ∀[bs:bag(A)]. ∀[f:A ⟶ bag(B)]. ∀[b:B].  uiff(b ↓∈ ⋃x∈bs.f[x];↓∃x:A. (x ↓∈ bs ∧ b ↓∈ f[x]))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-combine: ⋃x∈bs.f[x]
, 
bag: bag(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
squash: ↓T
, 
bag-member: x ↓∈ bs
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
empty-bag: {}
, 
bag-combine: ⋃x∈bs.f[x]
, 
bag-size: #(bs)
, 
bag-map: bag-map(f;bs)
, 
bag-union: bag-union(bbs)
, 
concat: concat(ll)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_stable: SqStable(P)
, 
length: ||as||
, 
list_ind: list_ind, 
bag-append: as + bs
, 
append: as @ bs
, 
single-bag: {x}
, 
cons: [a / b]
, 
nil: []
, 
it: ⋅
, 
true: True
, 
sq_or: a ↓∨ b
, 
cand: A c∧ B
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
int_seg_properties, 
int_seg_wf, 
subtract-1-ge-0, 
decidable__equal_int, 
subtract_wf, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
intformnot_wf, 
intformeq_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_subtract_lemma, 
decidable__le, 
decidable__lt, 
istype-le, 
subtype_rel_self, 
bag-cases, 
itermAdd_wf, 
int_term_value_add_lemma, 
istype-nat, 
bag-size_wf, 
bag_wf, 
istype-universe, 
length_of_nil_lemma, 
map_nil_lemma, 
reduce_nil_lemma, 
squash_wf, 
false_wf, 
bag-member_wf, 
iff_weakening_uiff, 
empty-bag_wf, 
bag-member-empty-iff, 
le_wf, 
uiff_wf, 
bag-combine_wf, 
sq_stable__all, 
sq_stable__uiff, 
sq_stable__bag-member, 
sq_stable__squash, 
equal-wf-base, 
subtract_nat_wf, 
add-is-int-iff, 
bag-combine-single-left, 
true_wf, 
bag-combine-append-left, 
single-bag_wf, 
iff_weakening_equal, 
sq_or_wf, 
bag-member-append, 
bag-append_wf, 
bag-member-single
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
productElimination, 
independent_pairEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
unionElimination, 
applyEquality, 
instantiate, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
productIsType, 
hypothesis_subsumption, 
addEquality, 
functionIsType, 
universeEquality, 
productEquality, 
promote_hyp, 
hyp_replacement, 
functionEquality, 
intEquality, 
equalityIstype, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
inlFormation_alt, 
unionEquality, 
inrFormation_alt
Latex:
\mforall{}[A,B:Type].  \mforall{}[bs:bag(A)].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].  \mforall{}[b:B].
    uiff(b  \mdownarrow{}\mmember{}  \mcup{}x\mmember{}bs.f[x];\mdownarrow{}\mexists{}x:A.  (x  \mdownarrow{}\mmember{}  bs  \mwedge{}  b  \mdownarrow{}\mmember{}  f[x]))
Date html generated:
2019_10_15-AM-11_01_38
Last ObjectModification:
2019_06_25-PM-03_26_03
Theory : bags
Home
Index