Nuprl Lemma : bag-combine-append-left

[A,B:Type]. ∀[ba,bb:bag(A)]. ∀[f:A ⟶ bag(B)].  (⋃x∈ba bb.f[x] (⋃x∈ba.f[x] + ⋃x∈bb.f[x]) ∈ bag(B))


Proof




Definitions occuring in Statement :  bag-combine: x∈bs.f[x] bag-append: as bs bag: bag(T) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-combine: x∈bs.f[x] subtype_rel: A ⊆B uimplies: supposing a top: Top squash: T exists: x:A. B[x] bag-map: bag-map(f;bs) bag-union: bag-union(bbs) bag-append: as bs so_apply: x[s] prop:
Lemmas referenced :  bag-map-append subtype_rel_bag top_wf bag_to_squash_list concat_append bag-append_wf bag-union_wf bag-map_wf bag_wf list-subtype-bag equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality because_Cache imageElimination productElimination promote_hyp rename cumulativity functionExtensionality hyp_replacement equalitySymmetry Error :applyLambdaEquality,  functionEquality axiomEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[ba,bb:bag(A)].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].    (\mcup{}x\mmember{}ba  +  bb.f[x]  =  (\mcup{}x\mmember{}ba.f[x]  +  \mcup{}x\mmember{}bb.f[x]))



Date html generated: 2016_10_25-AM-10_23_29
Last ObjectModification: 2016_07_12-AM-06_40_13

Theory : bags


Home Index