Nuprl Lemma : bag-combine-append-left
∀[A,B:Type]. ∀[ba,bb:bag(A)]. ∀[f:A ⟶ bag(B)].  (⋃x∈ba + bb.f[x] = (⋃x∈ba.f[x] + ⋃x∈bb.f[x]) ∈ bag(B))
Proof
Definitions occuring in Statement : 
bag-combine: ⋃x∈bs.f[x]
, 
bag-append: as + bs
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
bag-combine: ⋃x∈bs.f[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
bag-map: bag-map(f;bs)
, 
bag-union: bag-union(bbs)
, 
bag-append: as + bs
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
bag-map-append, 
subtype_rel_bag, 
top_wf, 
bag_to_squash_list, 
concat_append, 
bag-append_wf, 
bag-union_wf, 
bag-map_wf, 
bag_wf, 
list-subtype-bag, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
imageElimination, 
productElimination, 
promote_hyp, 
rename, 
cumulativity, 
functionExtensionality, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
functionEquality, 
axiomEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[ba,bb:bag(A)].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].    (\mcup{}x\mmember{}ba  +  bb.f[x]  =  (\mcup{}x\mmember{}ba.f[x]  +  \mcup{}x\mmember{}bb.f[x]))
Date html generated:
2016_10_25-AM-10_23_29
Last ObjectModification:
2016_07_12-AM-06_40_13
Theory : bags
Home
Index