Nuprl Lemma : bag-combine-single-left

[A,B:Type]. ∀[f:A ⟶ bag(B)]. ∀[a:A].  (⋃x∈{a}.f[x] f[a])


Proof




Definitions occuring in Statement :  bag-combine: x∈bs.f[x] single-bag: {x} bag: bag(T) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  single-bag: {x}
Lemmas referenced :  bag-combine-unit-left
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].  \mforall{}[a:A].    (\mcup{}x\mmember{}\{a\}.f[x]  \msim{}  f[a])



Date html generated: 2016_05_15-PM-02_28_18
Last ObjectModification: 2015_12_27-AM-09_50_42

Theory : bags


Home Index