Nuprl Lemma : bag-combine-single-left
∀[A,B:Type]. ∀[f:A ⟶ bag(B)]. ∀[a:A].  (⋃x∈{a}.f[x] ~ f[a])
Proof
Definitions occuring in Statement : 
bag-combine: ⋃x∈bs.f[x]
, 
single-bag: {x}
, 
bag: bag(T)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
single-bag: {x}
Lemmas referenced : 
bag-combine-unit-left
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].  \mforall{}[a:A].    (\mcup{}x\mmember{}\{a\}.f[x]  \msim{}  f[a])
Date html generated:
2016_05_15-PM-02_28_18
Last ObjectModification:
2015_12_27-AM-09_50_42
Theory : bags
Home
Index