Nuprl Lemma : bag-combine-unit-left

[A,B:Type]. ∀[f:A ⟶ bag(B)]. ∀[a:A].  (⋃x∈[a].f[x] f[a])


Proof




Definitions occuring in Statement :  bag-combine: x∈bs.f[x] bag: bag(T) cons: [a b] nil: [] uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag-combine: x∈bs.f[x] bag-map: bag-map(f;bs) bag-union: bag-union(bbs) all: x:A. B[x] top: Top concat: concat(ll) empty-bag: {} bag-append: as bs so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  map_cons_lemma map_nil_lemma reduce_cons_lemma reduce_nil_lemma bag-append-empty bag-subtype-list bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination applyEquality hypothesisEquality sqequalAxiom because_Cache functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].  \mforall{}[a:A].    (\mcup{}x\mmember{}[a].f[x]  \msim{}  f[a])



Date html generated: 2016_05_15-PM-02_28_12
Last ObjectModification: 2015_12_27-AM-09_50_50

Theory : bags


Home Index