Nuprl Lemma : bag-size_wf

[C:Type]. ∀[bs:bag(C)].  (#(bs) ∈ ℕ)


Proof




Definitions occuring in Statement :  bag-size: #(bs) bag: bag(T) nat: uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q bag-size: #(bs) prop: nat: uimplies: supposing a ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top
Lemmas referenced :  le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le non_neg_length permutation-length bag_wf permutation_wf list_wf equal-wf-base nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality lemma_by_obid hypothesis sqequalRule pertypeElimination productElimination thin productEquality isectElimination hypothesisEquality because_Cache cumulativity axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality universeEquality dependent_set_memberEquality independent_isectElimination dependent_functionElimination unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[C:Type].  \mforall{}[bs:bag(C)].    (\#(bs)  \mmember{}  \mBbbN{})



Date html generated: 2016_05_15-PM-02_24_49
Last ObjectModification: 2016_01_16-AM-08_57_24

Theory : bags


Home Index