Nuprl Lemma : sq_or_wf

[a,b:ℙ].  (a ↓∨ b ∈ ℙ)


Proof




Definitions occuring in Statement :  sq_or: a ↓∨ b uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sq_or: a ↓∨ b prop:
Lemmas referenced :  or_wf squash_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[a,b:\mBbbP{}].    (a  \mdownarrow{}\mvee{}  b  \mmember{}  \mBbbP{})



Date html generated: 2016_05_13-PM-03_13_13
Last ObjectModification: 2016_01_06-PM-05_23_17

Theory : core_2


Home Index