Nuprl Lemma : sq_or_wf
∀[a,b:ℙ].  (a ↓∨ b ∈ ℙ)
Proof
Definitions occuring in Statement : 
sq_or: a ↓∨ b
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
sq_or: a ↓∨ b
, 
prop: ℙ
Lemmas referenced : 
or_wf, 
squash_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[a,b:\mBbbP{}].    (a  \mdownarrow{}\mvee{}  b  \mmember{}  \mBbbP{})
Date html generated:
2016_05_13-PM-03_13_13
Last ObjectModification:
2016_01_06-PM-05_23_17
Theory : core_2
Home
Index