Nuprl Lemma : eclass-ext-classrel

[Info,T:Type]. ∀[X,Y:EClass(T)].
  uiff(X Y ∈ EClass(T);∀es:EO+(Info). ∀e:E. ∀v:T.  (v ∈ X(e) ⇐⇒ v ∈ Y(e))) 
  supposing ∀es:EO+(Info). ∀e:E.  ((#(X es e) ≤ 1) ∧ (#(Y es e) ≤ 1))


Proof




Definitions occuring in Statement :  classrel: v ∈ X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a natural_number: $n universe: Type equal: t ∈ T bag-size: #(bs)
Lemmas :  equal_wf bag_only_single_lemma bag-member-single classrel_wf
\mforall{}[Info,T:Type].  \mforall{}[X,Y:EClass(T)].
    uiff(X  =  Y;\mforall{}es:EO+(Info).  \mforall{}e:E.  \mforall{}v:T.    (v  \mmember{}  X(e)  \mLeftarrow{}{}\mRightarrow{}  v  \mmember{}  Y(e))) 
    supposing  \mforall{}es:EO+(Info).  \mforall{}e:E.    ((\#(X  es  e)  \mleq{}  1)  \mwedge{}  (\#(Y  es  e)  \mleq{}  1))



Date html generated: 2015_07_17-PM-00_15_43
Last ObjectModification: 2015_01_28-AM-00_03_56

Home Index