Step
*
1
1
1
of Lemma
eo-forward-pred
1. Info : Type
2. eo : EO+(Info)
3. e : E
4. e' : E
5. ¬↑first(e')
6. loc(pred(e')) = loc(e') ∈ Id
7. (pred(e') < e')
8. ∀e'@0:E. (e'@0 < e')
⇒ ((e'@0 = pred(e') ∈ E) ∨ (e'@0 < pred(e'))) supposing loc(e'@0) = loc(e') ∈ Id
9. ¬↑first(e')
10. loc(pred(e')) = loc(e') ∈ Id
11. (pred(e') < e')
12. ∀e'@0:E. (e'@0 < e')
⇒ ((e'@0 = pred(e') ∈ E) ∨ (e'@0 < pred(e'))) supposing loc(e'@0) = loc(e') ∈ Id
13. loc(pred(e')) = loc(e) ∈ Id
14. (pred(e') = pred(e') ∈ E) ∨ (pred(e') < pred(e'))
15. e ≤loc pred(e')
⊢ e ≤loc pred(e')
BY
{ (RepeatFor 3 (MoveToConcl (-1))
THEN MoveToConcl (-3)
THEN (GenConcl ⌈pred(e') = a ∈ E⌉⋅ THENA Auto)
THEN (GenConcl ⌈pred(e') = b ∈ E⌉⋅ THENA Auto)
THEN All Thin
THEN Auto) }
1
1. Info : Type
2. eo : EO+(Info)
3. e : E
4. e' : E
5. a : E@i
6. b : E@i
7. loc(a) = loc(e') ∈ Id@i
8. loc(a) = loc(e) ∈ Id@i
9. (b = a ∈ E) ∨ (b < a)@i
10. e ≤loc b @i
⊢ e ≤loc a
Latex:
1. Info : Type
2. eo : EO+(Info)
3. e : E
4. e' : E
5. \mneg{}\muparrow{}first(e')
6. loc(pred(e')) = loc(e')
7. (pred(e') < e')
8. \mforall{}e'@0:E. (e'@0 < e') {}\mRightarrow{} ((e'@0 = pred(e')) \mvee{} (e'@0 < pred(e'))) supposing loc(e'@0) = loc(e')
9. \mneg{}\muparrow{}first(e')
10. loc(pred(e')) = loc(e')
11. (pred(e') < e')
12. \mforall{}e'@0:E. (e'@0 < e') {}\mRightarrow{} ((e'@0 = pred(e')) \mvee{} (e'@0 < pred(e'))) supposing loc(e'@0) = loc(e')
13. loc(pred(e')) = loc(e)
14. (pred(e') = pred(e')) \mvee{} (pred(e') < pred(e'))
15. e \mleq{}loc pred(e')
\mvdash{} e \mleq{}loc pred(e')
By
(RepeatFor 3 (MoveToConcl (-1))
THEN MoveToConcl (-3)
THEN (GenConcl \mkleeneopen{}pred(e') = a\mkleeneclose{}\mcdot{} THENA Auto)
THEN (GenConcl \mkleeneopen{}pred(e') = b\mkleeneclose{}\mcdot{} THENA Auto)
THEN All Thin
THEN Auto)
Home
Index