Step
*
of Lemma
eo-strict-forward-before
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[e,b:E]. before(e) = (b, e) ∈ (E List) supposing (b <loc e)
BY
{ (Auto
THEN RepeatFor 3 (MoveToConcl (-1))
THEN CausalInd'
THEN Auto
THEN (Assert ⌈e ∈ E⌉⋅ THENA (BLemma `member-eo-strict-forward-E` THEN Auto))
THEN RecUnfold `es-before` 0
THEN (RWO "eo-strict-forward-first" 0 THENA Auto)
THEN OldAutoSplit
THEN Try (Complete ((Assert ⌈False⌉⋅ THEN Auto)))
THEN (Assert ⌈¬↑first(e)⌉⋅ THENA Auto)) }
1
1. Info : Type
2. es : EO+(Info)
3. e : E@i
4. ∀e1:E. ((e1 < e)
⇒ (∀b:E. ((b <loc e1)
⇒ (before(e1) = (b, e1) ∈ (E List)))))
5. b : E@i
6. (b <loc e)@i
7. e ∈ E
8. loc(e) = loc(b) ∈ Id
9. ¬↑first(e)
⊢ if es-eq(es) pred(e) b then [] else before(pred(e)) @ [pred(e)] fi = (b, e) ∈ (E List)
Latex:
\mforall{}[Info:Type]. \mforall{}[es:EO+(Info)]. \mforall{}[e,b:E]. before(e) = (b, e) supposing (b <loc e)
By
(Auto
THEN RepeatFor 3 (MoveToConcl (-1))
THEN CausalInd'
THEN Auto
THEN (Assert \mkleeneopen{}e \mmember{} E\mkleeneclose{}\mcdot{} THENA (BLemma `member-eo-strict-forward-E` THEN Auto))
THEN RecUnfold `es-before` 0
THEN (RWO "eo-strict-forward-first" 0 THENA Auto)
THEN OldAutoSplit
THEN Try (Complete ((Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{} THEN Auto)))
THEN (Assert \mkleeneopen{}\mneg{}\muparrow{}first(e)\mkleeneclose{}\mcdot{} THENA Auto))
Home
Index