Nuprl Lemma : es-E-interface_functionality

[Info:Type]. ∀[es:EO+(Info)]. ∀[X,Y:EClass(Top)].  E(X) ⊆E(Y) supposing ∀e:E. ((↑e ∈b X)  (↑e ∈b Y))


Proof




Definitions occuring in Statement :  es-E-interface: E(X) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top all: x:A. B[x] implies:  Q universe: Type
Lemmas :  subtype_rel_sets es-E_wf event-ordering+_subtype assert_wf in-eclass_wf all_wf eclass_wf top_wf event-ordering+_wf
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X,Y:EClass(Top)].
    E(X)  \msubseteq{}r  E(Y)  supposing  \mforall{}e:E.  ((\muparrow{}e  \mmember{}\msubb{}  X)  {}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  Y))



Date html generated: 2015_07_17-PM-00_56_37
Last ObjectModification: 2015_01_27-PM-10_47_35

Home Index