Step
*
1
4
1
1
1
2
of Lemma
es-cut-add-at
1. Info : Type
2. es : EO+(Info)
3. X : EClass(Top)
4. f : sys-antecedent(es;X)
5. c : Cut(X;f)
6. e : E(X)
7. (¬((f e) = e ∈ E(X)))
⇒ f e ∈ c
8. (↑e ∈b prior(X))
⇒ prior(X)(e) ∈ c
9. ¬e ∈ c
10. c+e ∈ Cut(X;f)
11. c+e ∈ fset(E)
12. ∀e@0:E(X). ((e@0 ∈ c+e(loc(e)))
⇐⇒ (loc(e@0) = loc(e) ∈ Id) ∧ e@0 ∈ c+e)
13. ∀e@0:E(X). ((e@0 ∈ c(loc(e)))
⇐⇒ (loc(e@0) = loc(e) ∈ Id) ∧ e@0 ∈ c)
14. t : E(X)@i
15. loc(t) = loc(e) ∈ Id@i
16. ((loc(t) = loc(e) ∈ Id) ∧ t ∈ c) ∨ (t = e ∈ E(X))@i
⊢ t ∈ c+e
BY
{ (Unfold `es-cut-add` (0) THEN RWO "member-fset-union" (0) THEN Auto)⋅ }
1
1. Info : Type
2. es : EO+(Info)
3. X : EClass(Top)
4. f : sys-antecedent(es;X)
5. c : Cut(X;f)
6. e : E(X)
7. (¬((f e) = e ∈ E(X)))
⇒ f e ∈ c
8. (↑e ∈b prior(X))
⇒ prior(X)(e) ∈ c
9. ¬e ∈ c
10. c+e ∈ Cut(X;f)
11. c+e ∈ fset(E)
12. ∀e@0:E(X). ((e@0 ∈ c+e(loc(e)))
⇐⇒ (loc(e@0) = loc(e) ∈ Id) ∧ e@0 ∈ c+e)
13. ∀e@0:E(X). ((e@0 ∈ c(loc(e)))
⇐⇒ (loc(e@0) = loc(e) ∈ Id) ∧ e@0 ∈ c)
14. t : E(X)@i
15. loc(t) = loc(e) ∈ Id@i
16. ((loc(t) = loc(e) ∈ Id) ∧ t ∈ c) ∨ (t = e ∈ E(X))@i
⊢ t ∈ {e} ∨ t ∈ c
Latex:
Latex:
1. Info : Type
2. es : EO+(Info)
3. X : EClass(Top)
4. f : sys-antecedent(es;X)
5. c : Cut(X;f)
6. e : E(X)
7. (\mneg{}((f e) = e)) {}\mRightarrow{} f e \mmember{} c
8. (\muparrow{}e \mmember{}\msubb{} prior(X)) {}\mRightarrow{} prior(X)(e) \mmember{} c
9. \mneg{}e \mmember{} c
10. c+e \mmember{} Cut(X;f)
11. c+e \mmember{} fset(E)
12. \mforall{}e@0:E(X). ((e@0 \mmember{} c+e(loc(e))) \mLeftarrow{}{}\mRightarrow{} (loc(e@0) = loc(e)) \mwedge{} e@0 \mmember{} c+e)
13. \mforall{}e@0:E(X). ((e@0 \mmember{} c(loc(e))) \mLeftarrow{}{}\mRightarrow{} (loc(e@0) = loc(e)) \mwedge{} e@0 \mmember{} c)
14. t : E(X)@i
15. loc(t) = loc(e)@i
16. ((loc(t) = loc(e)) \mwedge{} t \mmember{} c) \mvee{} (t = e)@i
\mvdash{} t \mmember{} c+e
By
Latex:
(Unfold `es-cut-add` (0) THEN RWO "member-fset-union" (0) THEN Auto)\mcdot{}
Home
Index