Step
*
1
2
1
of Lemma
es-cut-induction-ordered
1. [Info] : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. [P] : Cut(X;f) ─→ ℙ
6. ∃R:E(X) ─→ E(X) ─→ ℙ. (Linorder(E(X);x,y.R[x;y]) ∧ (∀x,y:E(X).  Dec(R[x;y])))@i'
7. P[{}]@i
8. ∀c:Cut(X;f). ∀e:E(X).
     (P[c] 
⇒ (P[c+e]) supposing (prior(X)(e) ∈ c supposing ↑e ∈b prior(X) and f e ∈ c supposing ¬((f e) = e ∈ E(X))))@i
9. c : Cut(X;f)@i
10. ∀n:ℕ. ∀c:Cut(X;f).  ((||c|| ≤ n) 
⇒ P[c])
11. es-eq(es) ∈ EqDecider(E(X))
⊢ P[c]
BY
{ (InstHyp [⌈||c||⌉; ⌈c⌉] (-2)⋅ THEN Auto)⋅ }
Latex:
Latex:
1.  [Info]  :  Type
2.  es  :  EO+(Info)@i'
3.  X  :  EClass(Top)@i'
4.  f  :  sys-antecedent(es;X)@i
5.  [P]  :  Cut(X;f)  {}\mrightarrow{}  \mBbbP{}
6.  \mexists{}R:E(X)  {}\mrightarrow{}  E(X)  {}\mrightarrow{}  \mBbbP{}.  (Linorder(E(X);x,y.R[x;y])  \mwedge{}  (\mforall{}x,y:E(X).    Dec(R[x;y])))@i'
7.  P[\{\}]@i
8.  \mforall{}c:Cut(X;f).  \mforall{}e:E(X).
          (P[c]
          {}\mRightarrow{}  (P[c+e])  supposing 
                      (prior(X)(e)  \mmember{}  c  supposing  \muparrow{}e  \mmember{}\msubb{}  prior(X)  and 
                      f  e  \mmember{}  c  supposing  \mneg{}((f  e)  =  e)))@i
9.  c  :  Cut(X;f)@i
10.  \mforall{}n:\mBbbN{}.  \mforall{}c:Cut(X;f).    ((||c||  \mleq{}  n)  {}\mRightarrow{}  P[c])
11.  es-eq(es)  \mmember{}  EqDecider(E(X))
\mvdash{}  P[c]
By
Latex:
(InstHyp  [\mkleeneopen{}||c||\mkleeneclose{};  \mkleeneopen{}c\mkleeneclose{}]  (-2)\mcdot{}  THEN  Auto)\mcdot{}
Home
Index