Nuprl Lemma : es-cut-induction-ordered

[Info:Type]
  ∀es:EO+(Info). ∀X:EClass(Top). ∀f:sys-antecedent(es;X).
    ∀[P:Cut(X;f) ─→ ℙ]
      ((∃R:E(X) ─→ E(X) ─→ ℙ(Linorder(E(X);x,y.R[x;y]) ∧ (∀x,y:E(X).  Dec(R[x;y]))))
       P[{}]
       (∀c:Cut(X;f). ∀e:E(X).
            (P[c]
             (P[c+e]) supposing (prior(X)(e) ∈ supposing ↑e ∈b prior(X) and e ∈ supposing ¬((f e) e ∈ E(X)))))
       (∀c:Cut(X;f). P[c]))


Proof




Definitions occuring in Statement :  es-cut-add: c+e es-cut: Cut(X;f) es-prior-interface: prior(X) sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-eq: es-eq(es) empty-fset: {} fset-member: a ∈ s linorder: Linorder(T;x,y.R[x; y]) assert: b decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] top: Top prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  es-eq_wf-interface less_than_transitivity1 less_than_irreflexivity int_seg_wf decidable__equal_int subtype_rel-int_seg false_wf le_weakening subtract_wf int_seg_properties le_wf fset-size_wf es-E-interface_wf es-cut_wf all_wf nat_wf decidable__lt not-equal-2 condition-implies-le minus-add minus-minus minus-one-mul add-swap add-commutes add-associates add_functionality_wrt_le zero-add le-add-cancel-alt less-iff-le le-add-cancel lelt_wf set_wf less_than_wf primrec-wf2 decidable__le not-le-2 sq_stable__le add-zero add-mul-special zero-mul empty-fset_wf decidable__equal_fset decidable__equal_es-E-interface equal-wf-T-base fset_wf fset-closed_wf cons_wf es-interface-pred_wf2 nil_wf empty-fset-closed fset-member_wf-cut fset-add-remove iff_weakening_equal sq_stable_from_decidable decidable__fset-closed fset-member_witness not_wf equal_wf eclass-val_wf2 es-prior-interface_wf assert_wf in-eclass_wf es-prior-interface_wf0 es-interface-subtype_rel2 es-E_wf event-ordering+_subtype event-ordering+_wf top_wf subtype_top es-cut-remove-1 subtype_base_sq int_subtype_base fset-size-empty squash_wf true_wf fset-size-remove es-eq_wf subtype_rel_fset strong-subtype-set3 strong-subtype-self fset-member_wf fset-remove_wf decidable__fset-member member-fset-remove l_all_iff sys-antecedent_wf es-interface-pred_wf l_member_wf isect_wf cons_member bool_wf bnot_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot es-prior-interface-locl es-locl_wf es-locl_transitivity2 es-le_weakening_eq es-locl_irreflexivity fset-to-list fset-extensionality subtype_rel_quotient_trivial list_wf set-equal_wf set-equal-equiv assert-deq-member iff_wf es-cut-add_wf cut-list-maximal-exists

Latex:
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:sys-antecedent(es;X).
        \mforall{}[P:Cut(X;f)  {}\mrightarrow{}  \mBbbP{}]
            ((\mexists{}R:E(X)  {}\mrightarrow{}  E(X)  {}\mrightarrow{}  \mBbbP{}.  (Linorder(E(X);x,y.R[x;y])  \mwedge{}  (\mforall{}x,y:E(X).    Dec(R[x;y]))))
            {}\mRightarrow{}  P[\{\}]
            {}\mRightarrow{}  (\mforall{}c:Cut(X;f).  \mforall{}e:E(X).
                        (P[c]
                        {}\mRightarrow{}  (P[c+e])  supposing 
                                    (prior(X)(e)  \mmember{}  c  supposing  \muparrow{}e  \mmember{}\msubb{}  prior(X)  and 
                                    f  e  \mmember{}  c  supposing  \mneg{}((f  e)  =  e))))
            {}\mRightarrow{}  (\mforall{}c:Cut(X;f).  P[c]))



Date html generated: 2015_07_21-PM-04_02_49
Last ObjectModification: 2015_02_04-PM-06_08_55

Home Index