Nuprl Lemma : es-cut-induction-ordered
∀[Info:Type]
  ∀es:EO+(Info). ∀X:EClass(Top). ∀f:sys-antecedent(es;X).
    ∀[P:Cut(X;f) ─→ ℙ]
      ((∃R:E(X) ─→ E(X) ─→ ℙ. (Linorder(E(X);x,y.R[x;y]) ∧ (∀x,y:E(X).  Dec(R[x;y]))))
      
⇒ P[{}]
      
⇒ (∀c:Cut(X;f). ∀e:E(X).
            (P[c]
            
⇒ (P[c+e]) supposing (prior(X)(e) ∈ c supposing ↑e ∈b prior(X) and f e ∈ c supposing ¬((f e) = e ∈ E(X)))))
      
⇒ (∀c:Cut(X;f). P[c]))
Proof
Definitions occuring in Statement : 
es-cut-add: c+e
, 
es-cut: Cut(X;f)
, 
es-prior-interface: prior(X)
, 
sys-antecedent: sys-antecedent(es;Sys)
, 
es-E-interface: E(X)
, 
eclass-val: X(e)
, 
in-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-eq: es-eq(es)
, 
empty-fset: {}
, 
fset-member: a ∈ s
, 
linorder: Linorder(T;x,y.R[x; y])
, 
assert: ↑b
, 
decidable: Dec(P)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
es-eq_wf-interface, 
less_than_transitivity1, 
less_than_irreflexivity, 
int_seg_wf, 
decidable__equal_int, 
subtype_rel-int_seg, 
false_wf, 
le_weakening, 
subtract_wf, 
int_seg_properties, 
le_wf, 
fset-size_wf, 
es-E-interface_wf, 
es-cut_wf, 
all_wf, 
nat_wf, 
decidable__lt, 
not-equal-2, 
condition-implies-le, 
minus-add, 
minus-minus, 
minus-one-mul, 
add-swap, 
add-commutes, 
add-associates, 
add_functionality_wrt_le, 
zero-add, 
le-add-cancel-alt, 
less-iff-le, 
le-add-cancel, 
lelt_wf, 
set_wf, 
less_than_wf, 
primrec-wf2, 
decidable__le, 
not-le-2, 
sq_stable__le, 
add-zero, 
add-mul-special, 
zero-mul, 
empty-fset_wf, 
decidable__equal_fset, 
decidable__equal_es-E-interface, 
equal-wf-T-base, 
fset_wf, 
fset-closed_wf, 
cons_wf, 
es-interface-pred_wf2, 
nil_wf, 
empty-fset-closed, 
fset-member_wf-cut, 
fset-add-remove, 
iff_weakening_equal, 
sq_stable_from_decidable, 
decidable__fset-closed, 
fset-member_witness, 
not_wf, 
equal_wf, 
eclass-val_wf2, 
es-prior-interface_wf, 
assert_wf, 
in-eclass_wf, 
es-prior-interface_wf0, 
es-interface-subtype_rel2, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
top_wf, 
subtype_top, 
es-cut-remove-1, 
subtype_base_sq, 
int_subtype_base, 
fset-size-empty, 
squash_wf, 
true_wf, 
fset-size-remove, 
es-eq_wf, 
subtype_rel_fset, 
strong-subtype-set3, 
strong-subtype-self, 
fset-member_wf, 
fset-remove_wf, 
decidable__fset-member, 
member-fset-remove, 
l_all_iff, 
sys-antecedent_wf, 
es-interface-pred_wf, 
l_member_wf, 
isect_wf, 
cons_member, 
bool_wf, 
bnot_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
es-prior-interface-locl, 
es-locl_wf, 
es-locl_transitivity2, 
es-le_weakening_eq, 
es-locl_irreflexivity, 
fset-to-list, 
fset-extensionality, 
subtype_rel_quotient_trivial, 
list_wf, 
set-equal_wf, 
set-equal-equiv, 
assert-deq-member, 
iff_wf, 
es-cut-add_wf, 
cut-list-maximal-exists
Latex:
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:sys-antecedent(es;X).
        \mforall{}[P:Cut(X;f)  {}\mrightarrow{}  \mBbbP{}]
            ((\mexists{}R:E(X)  {}\mrightarrow{}  E(X)  {}\mrightarrow{}  \mBbbP{}.  (Linorder(E(X);x,y.R[x;y])  \mwedge{}  (\mforall{}x,y:E(X).    Dec(R[x;y]))))
            {}\mRightarrow{}  P[\{\}]
            {}\mRightarrow{}  (\mforall{}c:Cut(X;f).  \mforall{}e:E(X).
                        (P[c]
                        {}\mRightarrow{}  (P[c+e])  supposing 
                                    (prior(X)(e)  \mmember{}  c  supposing  \muparrow{}e  \mmember{}\msubb{}  prior(X)  and 
                                    f  e  \mmember{}  c  supposing  \mneg{}((f  e)  =  e))))
            {}\mRightarrow{}  (\mforall{}c:Cut(X;f).  P[c]))
Date html generated:
2015_07_21-PM-04_02_49
Last ObjectModification:
2015_02_04-PM-06_08_55
Home
Index