Nuprl Lemma : strong-subtype-set3

[A,B:Type]. ∀[P:A ⟶ ℙ].  strong-subtype({x:A| P[x]} ;B) supposing strong-subtype(A;B)


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q so_apply: x[s] true: True prop: subtype_rel: A ⊆B top: Top
Lemmas referenced :  strong-subtype-set true_wf strong-subtype-set2 strong-subtype_witness strong-subtype_wf strong-subtype_transitivity top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis lambdaEquality lambdaFormation natural_numberEquality applyEquality because_Cache sqequalRule setEquality universeEquality independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry functionEquality cumulativity voidElimination voidEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    strong-subtype(\{x:A|  P[x]\}  ;B)  supposing  strong-subtype(A;B)



Date html generated: 2016_05_13-PM-04_11_17
Last ObjectModification: 2015_12_26-AM-11_21_24

Theory : subtype_1


Home Index