Nuprl Lemma : strong-subtype-set3
∀[A,B:Type]. ∀[P:A ⟶ ℙ].  strong-subtype({x:A| P[x]} B) supposing strong-subtype(A;B)
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
true: True
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
top: Top
Lemmas referenced : 
strong-subtype-set, 
true_wf, 
strong-subtype-set2, 
strong-subtype_witness, 
strong-subtype_wf, 
strong-subtype_transitivity, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
lambdaEquality, 
lambdaFormation, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
sqequalRule, 
setEquality, 
universeEquality, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
voidElimination, 
voidEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    strong-subtype(\{x:A|  P[x]\}  ;B)  supposing  strong-subtype(A;B)
Date html generated:
2016_05_13-PM-04_11_17
Last ObjectModification:
2015_12_26-AM-11_21_24
Theory : subtype_1
Home
Index