Nuprl Lemma : strong-subtype-set
∀[A,B:Type].  ∀[P:A ⟶ ℙ]. ∀[Q:B ⟶ ℙ].  strong-subtype({x:A| P[x]} {x:B| Q[x]} ) supposing ∀x:A. (P[x] 
⇒ Q[x]) suppos\000Cing strong-subtype(A;B)
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
Lemmas referenced : 
strong-subtype-implies, 
strong-subtype_witness, 
all_wf, 
strong-subtype_wf, 
subtype_rel_sets, 
subtype_rel_transitivity, 
exists_wf, 
equal_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
independent_pairFormation, 
setEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
lambdaEquality, 
sqequalRule, 
universeEquality, 
because_Cache, 
functionEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
setElimination, 
rename, 
dependent_set_memberEquality, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
equalityUniverse, 
levelHypothesis, 
imageElimination, 
hyp_replacement, 
Error :applyLambdaEquality
Latex:
\mforall{}[A,B:Type].
    \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Q:B  {}\mrightarrow{}  \mBbbP{}].    strong-subtype(\{x:A|  P[x]\}  ;\{x:B|  Q[x]\}  )  supposing  \mforall{}x:A.  (P[x]  {}\mRightarrow{}  Q[x]\000C) 
    supposing  strong-subtype(A;B)
Date html generated:
2016_10_21-AM-09_41_28
Last ObjectModification:
2016_07_12-AM-05_03_33
Theory : subtype_1
Home
Index