Nuprl Lemma : strong-subtype-set

[A,B:Type].  ∀[P:A ⟶ ℙ]. ∀[Q:B ⟶ ℙ].  strong-subtype({x:A| P[x]} ;{x:B| Q[x]} supposing ∀x:A. (P[x]  Q[x]) suppos\000Cing strong-subtype(A;B)


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q guard: {T} strong-subtype: strong-subtype(A;B) cand: c∧ B so_apply: x[s] subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] all: x:A. B[x] exists: x:A. B[x] squash: T and: P ∧ Q
Lemmas referenced :  strong-subtype-implies strong-subtype_witness all_wf strong-subtype_wf subtype_rel_sets subtype_rel_transitivity exists_wf equal_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination independent_pairFormation setEquality cumulativity applyEquality functionExtensionality lambdaEquality sqequalRule universeEquality because_Cache functionEquality isect_memberEquality equalityTransitivity equalitySymmetry independent_isectElimination setElimination rename dependent_set_memberEquality dependent_functionElimination imageMemberEquality baseClosed equalityUniverse levelHypothesis imageElimination hyp_replacement Error :applyLambdaEquality

Latex:
\mforall{}[A,B:Type].
    \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[Q:B  {}\mrightarrow{}  \mBbbP{}].    strong-subtype(\{x:A|  P[x]\}  ;\{x:B|  Q[x]\}  )  supposing  \mforall{}x:A.  (P[x]  {}\mRightarrow{}  Q[x]\000C) 
    supposing  strong-subtype(A;B)



Date html generated: 2016_10_21-AM-09_41_28
Last ObjectModification: 2016_07_12-AM-05_03_33

Theory : subtype_1


Home Index