Nuprl Lemma : strong-subtype-implies
∀[A,B:Type].  (strong-subtype(A;B) ⇒ {∀b:B. ∀a:A.  ((b = a ∈ B) ⇒ (b = a ∈ A))})
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B), 
uall: ∀[x:A]. B[x], 
guard: {T}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
guard: {T}, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
prop: ℙ, 
subtype_rel: A ⊆r B, 
strong-subtype: strong-subtype(A;B), 
cand: A c∧ B, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
equal_wf, 
exists_wf, 
strong-subtype_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
dependent_pairFormation, 
because_Cache, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
productElimination, 
sqequalRule, 
dependent_set_memberEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
universeEquality, 
isect_memberEquality
Latex:
\mforall{}[A,B:Type].    (strong-subtype(A;B)  {}\mRightarrow{}  \{\mforall{}b:B.  \mforall{}a:A.    ((b  =  a)  {}\mRightarrow{}  (b  =  a))\})
Date html generated:
2017_04_14-AM-07_36_46
Last ObjectModification:
2017_02_27-PM-03_09_05
Theory : subtype_1
Home
Index