Nuprl Lemma : strong-subtype-set2

[A:Type]. ∀[P:A ⟶ ℙ].  strong-subtype({x:A| P[x]} ;A)


Proof




Definitions occuring in Statement :  strong-subtype: strong-subtype(A;B) uall: [x:A]. B[x] prop: so_apply: x[s] set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T strong-subtype: strong-subtype(A;B) cand: c∧ B subtype_rel: A ⊆B so_apply: x[s] exists: x:A. B[x] and: P ∧ Q prop: so_lambda: λ2x.t[x] implies:  Q
Lemmas referenced :  and_wf equal_wf exists_wf strong-subtype_witness
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaEquality setElimination thin rename hypothesisEquality setEquality cumulativity applyEquality functionExtensionality hypothesis because_Cache sqequalHypSubstitution sqequalRule independent_pairFormation productElimination dependent_set_memberEquality equalitySymmetry extract_by_obid isectElimination hyp_replacement Error :applyLambdaEquality,  universeEquality independent_functionElimination functionEquality isect_memberEquality

Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    strong-subtype(\{x:A|  P[x]\}  ;A)



Date html generated: 2016_10_21-AM-09_41_30
Last ObjectModification: 2016_07_12-AM-05_03_32

Theory : subtype_1


Home Index