Nuprl Lemma : strong-subtype-set2
∀[A:Type]. ∀[P:A ⟶ ℙ].  strong-subtype({x:A| P[x]} A)
Proof
Definitions occuring in Statement : 
strong-subtype: strong-subtype(A;B)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
Lemmas referenced : 
and_wf, 
equal_wf, 
exists_wf, 
strong-subtype_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaEquality, 
setElimination, 
thin, 
rename, 
hypothesisEquality, 
setEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
hypothesis, 
because_Cache, 
sqequalHypSubstitution, 
sqequalRule, 
independent_pairFormation, 
productElimination, 
dependent_set_memberEquality, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
hyp_replacement, 
Error :applyLambdaEquality, 
universeEquality, 
independent_functionElimination, 
functionEquality, 
isect_memberEquality
Latex:
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    strong-subtype(\{x:A|  P[x]\}  ;A)
Date html generated:
2016_10_21-AM-09_41_30
Last ObjectModification:
2016_07_12-AM-05_03_32
Theory : subtype_1
Home
Index