Step * of Lemma strong-subtype-set3

[A,B:Type]. ∀[P:A ⟶ ℙ].  strong-subtype({x:A| P[x]} ;B) supposing strong-subtype(A;B)
BY
(((Auto THEN (InstLemma `strong-subtype-set` [⌜A⌝; ⌜B⌝; ⌜P⌝; ⌜λx.True⌝])⋅THENA Auto)
   THEN ReduceSOAps 0
   THEN Auto
   THEN (InstLemma `strong-subtype-set2` [⌜B⌝; ⌜λx.True⌝])⋅
   THEN Auto) }

1
1. Type
2. Type
3. A ⟶ ℙ
4. strong-subtype(A;B)
5. strong-subtype({x:A| P[x]} ;{x:B| λx.True[x]} )
6. strong-subtype({x:B| λx.True[x]} ;B)
⊢ strong-subtype({x:A| x} ;B)


Latex:


Latex:
\mforall{}[A,B:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].    strong-subtype(\{x:A|  P[x]\}  ;B)  supposing  strong-subtype(A;B)


By


Latex:
(((Auto  THEN  (InstLemma  `strong-subtype-set`  [\mkleeneopen{}A\mkleeneclose{};  \mkleeneopen{}B\mkleeneclose{};  \mkleeneopen{}P\mkleeneclose{};  \mkleeneopen{}\mlambda{}x.True\mkleeneclose{}])\mcdot{})  THENA  Auto)
  THEN  ReduceSOAps  0
  THEN  Auto
  THEN  (InstLemma  `strong-subtype-set2`  [\mkleeneopen{}B\mkleeneclose{};  \mkleeneopen{}\mlambda{}x.True\mkleeneclose{}])\mcdot{}
  THEN  Auto)




Home Index