Nuprl Lemma : subtype_rel_quotient_trivial
∀[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  T ⊆r (x,y:T//E[x;y]) supposing EquivRel(T;x,y.E[x;y])
Proof
Definitions occuring in Statement : 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
quotient: x,y:A//B[x; y]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
subtype_quotient, 
equiv_rel_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
hypothesis, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    T  \msubseteq{}r  (x,y:T//E[x;y])  supposing  EquivRel(T;x,y.E[x;y])
Date html generated:
2016_05_14-AM-06_08_06
Last ObjectModification:
2015_12_26-AM-11_48_27
Theory : quot_1
Home
Index