Nuprl Lemma : set-equal-equiv

[T:Type]. EquivRel(T List;x,y.set-equal(T;x;y))


Proof




Definitions occuring in Statement :  set-equal: set-equal(T;x;y) list: List equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  set-equal: set-equal(T;x;y) equiv_rel: EquivRel(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B all: x:A. B[x] iff: ⇐⇒ Q implies:  Q member: t ∈ T prop: rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  l_member_wf list_wf all_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation cut lambdaFormation independent_pairFormation hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache lambdaEquality universeEquality dependent_functionElimination productElimination independent_functionElimination

Latex:
\mforall{}[T:Type].  EquivRel(T  List;x,y.set-equal(T;x;y))



Date html generated: 2016_05_14-PM-01_37_26
Last ObjectModification: 2015_12_26-PM-05_28_22

Theory : list_1


Home Index