Nuprl Lemma : set-equal-equiv
∀[T:Type]. EquivRel(T List;x,y.set-equal(T;x;y))
Proof
Definitions occuring in Statement : 
set-equal: set-equal(T;x;y)
, 
list: T List
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
set-equal: set-equal(T;x;y)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
trans: Trans(T;x,y.E[x; y])
, 
sym: Sym(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
guard: {T}
Lemmas referenced : 
l_member_wf, 
list_wf, 
all_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
cut, 
lambdaFormation, 
independent_pairFormation, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
lambdaEquality, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  EquivRel(T  List;x,y.set-equal(T;x;y))
Date html generated:
2016_05_14-PM-01_37_26
Last ObjectModification:
2015_12_26-PM-05_28_22
Theory : list_1
Home
Index