Nuprl Lemma : subtype_rel-int_seg
∀[m1,n1,m2,n2:ℤ].  {m1..n1-} ⊆r {m2..n2-} supposing (m2 ≤ m1) ∧ (n1 ≤ n2)
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
Lemmas referenced : 
int_seg_subtype, 
and_wf, 
le_wf
Rules used in proof : 
comment, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
independent_isectElimination, 
independent_pairFormation, 
hypothesis, 
sqequalRule, 
axiomEquality, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
intEquality
Latex:
\mforall{}[m1,n1,m2,n2:\mBbbZ{}].    \{m1..n1\msupminus{}\}  \msubseteq{}r  \{m2..n2\msupminus{}\}  supposing  (m2  \mleq{}  m1)  \mwedge{}  (n1  \mleq{}  n2)
Date html generated:
2016_05_13-PM-04_02_02
Last ObjectModification:
2015_12_26-AM-10_56_47
Theory : int_1
Home
Index