Step
*
1
1
1
2
2
1
of Lemma
es-cut-induction-sq-stable
1. Info : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. P : Cut(X;f) ─→ ℙ
6. ∀c:Cut(X;f). ((↓P[c])
⇒ P[c])@i
7. P[{}]@i
8. ∀c:Cut(X;f). ∀e:E(X).
(P[c]
⇒ (P[c+e]) supposing (prior(X)(e) ∈ c supposing ↑e ∈b prior(X) and f e ∈ c supposing ¬((f e) = e ∈ E(X))))@i
9. es-eq(es) ∈ EqDecider(E(X))
10. n : ℕ
11. ∀n:ℕn. ∀c:Cut(X;f). ((||c|| ≤ n)
⇒ P[c])@i
12. c : Cut(X;f)@i
13. ||c|| ≤ n@i
14. ¬(c = {} ∈ fset(E(X)))
15. ∀e:E(X)
(e ∈ c
⇒ (∀e':E(X). (e' ∈ c
⇒ (e = (X-pred e') ∈ E(X))
⇒ (e' = e ∈ E(X))))
⇒ (∀e':E(X). (e' ∈ c
⇒ (e = (f e') ∈ E(X))
⇒ (e' = e ∈ E(X))))
⇒ P[c])
⊢ Ax ∈ ↓P[c]
BY
{ (Lemmaize [-1;-2] THEN Auto) }
1
1. Info : Type@i'
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. P : Cut(X;f) ─→ ℙ@i'
6. c : Cut(X;f)@i
7. ¬(c = {} ∈ fset(E(X)))@i
8. ∀e:E(X)
(e ∈ c
⇒ (∀e':E(X). (e' ∈ c
⇒ (e = (X-pred e') ∈ E(X))
⇒ (e' = e ∈ E(X))))
⇒ (∀e':E(X). (e' ∈ c
⇒ (e = (f e') ∈ E(X))
⇒ (e' = e ∈ E(X))))
⇒ P[c])@i
⊢ Ax ∈ ↓P[c]
Latex:
Latex:
1. Info : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : sys-antecedent(es;X)@i
5. P : Cut(X;f) {}\mrightarrow{} \mBbbP{}
6. \mforall{}c:Cut(X;f). ((\mdownarrow{}P[c]) {}\mRightarrow{} P[c])@i
7. P[\{\}]@i
8. \mforall{}c:Cut(X;f). \mforall{}e:E(X).
(P[c]
{}\mRightarrow{} (P[c+e]) supposing
(prior(X)(e) \mmember{} c supposing \muparrow{}e \mmember{}\msubb{} prior(X) and
f e \mmember{} c supposing \mneg{}((f e) = e)))@i
9. es-eq(es) \mmember{} EqDecider(E(X))
10. n : \mBbbN{}
11. \mforall{}n:\mBbbN{}n. \mforall{}c:Cut(X;f). ((||c|| \mleq{} n) {}\mRightarrow{} P[c])@i
12. c : Cut(X;f)@i
13. ||c|| \mleq{} n@i
14. \mneg{}(c = \{\})
15. \mforall{}e:E(X)
(e \mmember{} c
{}\mRightarrow{} (\mforall{}e':E(X). (e' \mmember{} c {}\mRightarrow{} (e = (X-pred e')) {}\mRightarrow{} (e' = e)))
{}\mRightarrow{} (\mforall{}e':E(X). (e' \mmember{} c {}\mRightarrow{} (e = (f e')) {}\mRightarrow{} (e' = e)))
{}\mRightarrow{} P[c])
\mvdash{} Ax \mmember{} \mdownarrow{}P[c]
By
Latex:
(Lemmaize [-1;-2] THEN Auto)
Home
Index