Step
*
2
of Lemma
es-interface-history-prior
1. Info : Type
2. es : EO+(Info)
3. A : Type
4. X : EClass(A List)
5. e : E(X)
6. ¬↑e ∈b prior(X)
⊢ concat(mapfilter(λe.X(e);λe.e ∈b X;≤loc(e))) = X(e) ∈ (A List)
BY
{ (Unfold `es-le-before` 0
THEN ((RWO "mapfilter-append" 0 THENM RWO "concat_append" 0) THENA Auto)
THEN Subst ⌈X(e) ~ [] @ X(e)⌉ 0⋅
THEN Try (Complete ((Reduce 0 THEN Auto)))
THEN EqCD
THEN Auto)⋅ }
1
.....subterm..... T:t
1:n
1. Info : Type
2. es : EO+(Info)
3. A : Type
4. X : EClass(A List)
5. e : E(X)
6. ¬↑e ∈b prior(X)
⊢ concat(mapfilter(λe.X(e);λe.e ∈b X;before(e))) = [] ∈ (A List)
2
.....subterm..... T:t
2:n
1. Info : Type
2. es : EO+(Info)
3. A : Type
4. X : EClass(A List)
5. e : E(X)
6. ¬↑e ∈b prior(X)
⊢ concat(mapfilter(λe.X(e);λe.e ∈b X;[e])) = X(e) ∈ (A List)
Latex:
Latex:
1. Info : Type
2. es : EO+(Info)
3. A : Type
4. X : EClass(A List)
5. e : E(X)
6. \mneg{}\muparrow{}e \mmember{}\msubb{} prior(X)
\mvdash{} concat(mapfilter(\mlambda{}e.X(e);\mlambda{}e.e \mmember{}\msubb{} X;\mleq{}loc(e))) = X(e)
By
Latex:
(Unfold `es-le-before` 0
THEN ((RWO "mapfilter-append" 0 THENM RWO "concat\_append" 0) THENA Auto)
THEN Subst \mkleeneopen{}X(e) \msim{} [] @ X(e)\mkleeneclose{} 0\mcdot{}
THEN Try (Complete ((Reduce 0 THEN Auto)))
THEN EqCD
THEN Auto)\mcdot{}
Home
Index