Step * of Lemma es-interface-union-left

[Info,A:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(Top)].  left(X+Y) X ∈ EClass(A) supposing Singlevalued(X)
BY
(Auto
   THEN Unfold `eclass` 0
   THEN RepeatFor ((Ext ⋅ THEN Reduce THEN Auto))
   THEN (RepUR ``eclass es-interface-union es-interface-left eclass-compose2 
                 eclass-val in-eclass eclass-compose1`` 0⋅
         THEN Fold `in-eclass` 0
         THEN Repeat (OldAutoSplit))) }

1
1. Info Type
2. Type
3. EClass(A)
4. EClass(Top)
5. Singlevalued(X)
6. EO+(Info)
7. x1 E
8. ↑x1 ∈b X
⊢ (fst(bag-separate({inl only(X x1)}))) (X x1) ∈ bag(A)

2
1. Info Type
2. Type
3. EClass(A)
4. EClass(Top)
5. Singlevalued(X)
6. EO+(Info)
7. x1 E
8. ¬↑x1 ∈b X
9. ↑x1 ∈b Y
⊢ (fst(bag-separate({inr only(Y x1) }))) (X x1) ∈ bag(A)

3
1. Info Type
2. Type
3. EClass(A)
4. EClass(Top)
5. Singlevalued(X)
6. EO+(Info)
7. x1 E
8. ¬↑x1 ∈b X
9. ¬↑x1 ∈b Y
⊢ {} (X x1) ∈ bag(A)


Latex:



Latex:
\mforall{}[Info,A:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(Top)].    left(X+Y)  =  X  supposing  Singlevalued(X)


By


Latex:
(Auto
  THEN  Unfold  `eclass`  0
  THEN  RepeatFor  2  ((Ext  \mcdot{}  THEN  Reduce  0  THEN  Auto))
  THEN  (RepUR  ``eclass  es-interface-union  es-interface-left  eclass-compose2 
                              eclass-val  in-eclass  eclass-compose1``  0\mcdot{}
              THEN  Fold  `in-eclass`  0
              THEN  Repeat  (OldAutoSplit)))




Home Index