Step
*
1
of Lemma
es-interface-val-disjoint
1. Info : Type
2. es : EO+(Info)
3. A : Type
4. Xs : EClass(A) List
5. ∀X:EClass(A). ((X ∈ Xs)
⇒ (∀Y:EClass(A). ((Y ∈ Xs)
⇒ ((X = Y ∈ EClass(A)) ∨ X ∩ Y = 0))))
6. X : EClass(A)
7. (X ∈ Xs)
8. e : E
9. ↑e ∈b X
10. ↑e ∈b first-eclass(Xs)
⊢ first-eclass(Xs)(e) = X(e) ∈ A
BY
{ ((FLemma `first-eclass-val` [-1]⋅ THEN Auto)
THEN D -1
THEN Auto
THEN NthHypEq (-1)
THEN RepeatFor 2 ((EqCD THEN Auto))) }
1
.....subterm..... T:t
2:n
1. Info : Type
2. es : EO+(Info)
3. A : Type
4. Xs : EClass(A) List
5. ∀X:EClass(A). ((X ∈ Xs)
⇒ (∀Y:EClass(A). ((Y ∈ Xs)
⇒ ((X = Y ∈ EClass(A)) ∨ X ∩ Y = 0))))
6. X : EClass(A)
7. (X ∈ Xs)
8. e : E
9. ↑e ∈b X
10. ↑e ∈b first-eclass(Xs)
11. i : ℕ||Xs||
12. ↑e ∈b Xs[i]
13. first-eclass(Xs)(e) = Xs[i](e) ∈ A
⊢ X = Xs[i] ∈ EClass(A)
Latex:
Latex:
1. Info : Type
2. es : EO+(Info)
3. A : Type
4. Xs : EClass(A) List
5. \mforall{}X:EClass(A). ((X \mmember{} Xs) {}\mRightarrow{} (\mforall{}Y:EClass(A). ((Y \mmember{} Xs) {}\mRightarrow{} ((X = Y) \mvee{} X \mcap{} Y = 0))))
6. X : EClass(A)
7. (X \mmember{} Xs)
8. e : E
9. \muparrow{}e \mmember{}\msubb{} X
10. \muparrow{}e \mmember{}\msubb{} first-eclass(Xs)
\mvdash{} first-eclass(Xs)(e) = X(e)
By
Latex:
((FLemma `first-eclass-val` [-1]\mcdot{} THEN Auto)
THEN D -1
THEN Auto
THEN NthHypEq (-1)
THEN RepeatFor 2 ((EqCD THEN Auto)))
Home
Index