Nuprl Lemma : es-interface-val-disjoint

[Info:Type]. ∀[es:EO+(Info)]. ∀[A:Type]. ∀[Xs:EClass(A) List].
  ∀[X:EClass(A)]. ∀[e:E]. first-eclass(Xs)(e) X(e) ∈ supposing ↑e ∈b supposing (X ∈ Xs) 
  supposing (∀X∈Xs.(∀Y∈Xs.(X Y ∈ EClass(A)) ∨ X ∩ 0))


Proof




Definitions occuring in Statement :  es-interface-disjoint: X ∩ 0 first-eclass: first-eclass(Xs) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E l_all: (∀x∈L.P[x]) l_member: (x ∈ l) list: List assert: b uimplies: supposing a uall: [x:A]. B[x] or: P ∨ Q universe: Type equal: t ∈ T
Lemmas :  first-eclass-val equal_wf squash_wf true_wf eclass-val_wf es-E_wf event-ordering+_subtype select_wf eclass_wf event-ordering+_wf sq_stable__le select_member

Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A:Type].  \mforall{}[Xs:EClass(A)  List].
    \mforall{}[X:EClass(A)].  \mforall{}[e:E].  first-eclass(Xs)(e)  =  X(e)  supposing  \muparrow{}e  \mmember{}\msubb{}  X  supposing  (X  \mmember{}  Xs) 
    supposing  (\mforall{}X\mmember{}Xs.(\mforall{}Y\mmember{}Xs.(X  =  Y)  \mvee{}  X  \mcap{}  Y  =  0))



Date html generated: 2015_07_20-PM-03_32_01
Last ObjectModification: 2015_01_27-PM-10_21_38

Home Index