Nuprl Lemma : es-interface-val-disjoint
∀[Info:Type]. ∀[es:EO+(Info)]. ∀[A:Type]. ∀[Xs:EClass(A) List].
  ∀[X:EClass(A)]. ∀[e:E]. first-eclass(Xs)(e) = X(e) ∈ A supposing ↑e ∈b X supposing (X ∈ Xs) 
  supposing (∀X∈Xs.(∀Y∈Xs.(X = Y ∈ EClass(A)) ∨ X ∩ Y = 0))
Proof
Definitions occuring in Statement : 
es-interface-disjoint: X ∩ Y = 0
, 
first-eclass: first-eclass(Xs)
, 
eclass-val: X(e)
, 
in-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
list: T List
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
first-eclass-val, 
equal_wf, 
squash_wf, 
true_wf, 
eclass-val_wf, 
es-E_wf, 
event-ordering+_subtype, 
select_wf, 
eclass_wf, 
event-ordering+_wf, 
sq_stable__le, 
select_member
Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[A:Type].  \mforall{}[Xs:EClass(A)  List].
    \mforall{}[X:EClass(A)].  \mforall{}[e:E].  first-eclass(Xs)(e)  =  X(e)  supposing  \muparrow{}e  \mmember{}\msubb{}  X  supposing  (X  \mmember{}  Xs) 
    supposing  (\mforall{}X\mmember{}Xs.(\mforall{}Y\mmember{}Xs.(X  =  Y)  \mvee{}  X  \mcap{}  Y  =  0))
Date html generated:
2015_07_20-PM-03_32_01
Last ObjectModification:
2015_01_27-PM-10_21_38
Home
Index