Nuprl Lemma : first-eclass-val
∀[Info,A:Type].
  ∀Xs:EClass(A) List. ∀es:EO+(Info). ∀e:E.
    (∃X∈Xs. (↑e ∈b X) ∧ (first-eclass(Xs)(e) = X(e) ∈ A)) supposing ↑e ∈b first-eclass(Xs)
Proof
Definitions occuring in Statement : 
first-eclass: first-eclass(Xs)
, 
eclass-val: X(e)
, 
in-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-E: E
, 
l_exists: (∃x∈L. P[x])
, 
list: T List
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
list_induction, 
all_wf, 
es-E_wf, 
event-ordering+_subtype, 
isect_wf, 
assert_wf, 
in-eclass_wf, 
first-eclass_wf, 
top_wf, 
subtype_rel_list, 
eclass_wf, 
es-interface-subtype_rel2, 
l_exists_wf, 
l_member_wf, 
eclass-val_wf, 
assert_witness, 
nil_wf, 
cons_wf, 
in-first-eclass, 
l_exists_cons, 
list_wf, 
event-ordering+_wf, 
bag_size_empty_lemma, 
list_accum_nil_lemma, 
decidable__assert, 
sq_stable__le, 
select_wf, 
lelt_wf, 
length_wf_nat, 
non_neg_length, 
length_wf, 
false_wf, 
length_of_cons_lemma, 
bag_wf, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
add-swap, 
minus-minus, 
less-iff-le, 
not-ge-2, 
subtract_wf, 
le_wf, 
add-commutes, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-le-2, 
decidable__le, 
nat_wf, 
le-add-cancel, 
zero-add, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
le_antisymmetry_iff, 
spread_cons_lemma, 
product_subtype_list, 
list-cases, 
colength_wf_list, 
equal-wf-T-base, 
bag-size_wf, 
eq_int_wf, 
less_than_wf, 
ge_wf, 
less_than_irreflexivity, 
less_than_transitivity1, 
nat_properties, 
list_accum_cons_lemma, 
member_wf, 
assert_of_eq_int, 
decidable__lt, 
le_weakening, 
single-valued-bag-if-le1, 
bag-only_wf2, 
neg_assert_of_eq_int, 
assert-bnot, 
bool_subtype_base, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
true_wf, 
eqtt_to_assert, 
bool_wf, 
squash_wf, 
not_wf, 
length_wf_nil, 
length_nil, 
list_accum_wf, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
bool_cases, 
ifthenelse_wf, 
and_wf, 
zero-le-nat, 
bnot_wf, 
not-equal-2
Latex:
\mforall{}[Info,A:Type].
    \mforall{}Xs:EClass(A)  List.  \mforall{}es:EO+(Info).  \mforall{}e:E.
        (\mexists{}X\mmember{}Xs.  (\muparrow{}e  \mmember{}\msubb{}  X)  \mwedge{}  (first-eclass(Xs)(e)  =  X(e)))  supposing  \muparrow{}e  \mmember{}\msubb{}  first-eclass(Xs)
Date html generated:
2015_07_20-PM-03_18_14
Last ObjectModification:
2015_07_16-AM-09_43_19
Home
Index