Nuprl Lemma : first-eclass-val

[Info,A:Type].
  ∀Xs:EClass(A) List. ∀es:EO+(Info). ∀e:E.
    (∃X∈Xs. (↑e ∈b X) ∧ (first-eclass(Xs)(e) X(e) ∈ A)) supposing ↑e ∈b first-eclass(Xs)


Proof




Definitions occuring in Statement :  first-eclass: first-eclass(Xs) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E l_exists: (∃x∈L. P[x]) list: List assert: b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q universe: Type equal: t ∈ T
Lemmas :  list_induction all_wf es-E_wf event-ordering+_subtype isect_wf assert_wf in-eclass_wf first-eclass_wf top_wf subtype_rel_list eclass_wf es-interface-subtype_rel2 l_exists_wf l_member_wf eclass-val_wf assert_witness nil_wf cons_wf in-first-eclass l_exists_cons list_wf event-ordering+_wf bag_size_empty_lemma list_accum_nil_lemma decidable__assert sq_stable__le select_wf lelt_wf length_wf_nat non_neg_length length_wf false_wf length_of_cons_lemma bag_wf int_subtype_base set_subtype_base subtype_base_sq add-swap minus-minus less-iff-le not-ge-2 subtract_wf le_wf add-commutes minus-one-mul minus-add condition-implies-le not-le-2 decidable__le nat_wf le-add-cancel zero-add add-zero add-associates add_functionality_wrt_le le_antisymmetry_iff spread_cons_lemma product_subtype_list list-cases colength_wf_list equal-wf-T-base bag-size_wf eq_int_wf less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties list_accum_cons_lemma member_wf assert_of_eq_int decidable__lt le_weakening single-valued-bag-if-le1 bag-only_wf2 neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal equal_wf eqff_to_assert true_wf eqtt_to_assert bool_wf squash_wf not_wf length_wf_nil length_nil list_accum_wf assert_of_bnot iff_weakening_uiff iff_transitivity bool_cases ifthenelse_wf and_wf zero-le-nat bnot_wf not-equal-2

Latex:
\mforall{}[Info,A:Type].
    \mforall{}Xs:EClass(A)  List.  \mforall{}es:EO+(Info).  \mforall{}e:E.
        (\mexists{}X\mmember{}Xs.  (\muparrow{}e  \mmember{}\msubb{}  X)  \mwedge{}  (first-eclass(Xs)(e)  =  X(e)))  supposing  \muparrow{}e  \mmember{}\msubb{}  first-eclass(Xs)



Date html generated: 2015_07_20-PM-03_18_14
Last ObjectModification: 2015_07_16-AM-09_43_19

Home Index