Nuprl Lemma : length_wf_nil
||[]|| ∈ ℕ
Proof
Definitions occuring in Statement :
length: ||as||
,
nil: []
,
nat: ℕ
,
member: t ∈ T
Definitions unfolded in proof :
member: t ∈ T
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
Lemmas referenced :
length_of_nil_lemma,
false_wf,
le_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
cut,
lemma_by_obid,
hypothesis,
sqequalTransitivity,
computationStep,
dependent_set_memberEquality,
natural_numberEquality,
independent_pairFormation,
lambdaFormation,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality
Latex:
||[]|| \mmember{} \mBbbN{}
Date html generated:
2016_05_14-AM-06_33_06
Last ObjectModification:
2015_12_26-PM-00_37_17
Theory : list_0
Home
Index