Nuprl Lemma : bag-only_wf2
∀[T:Type]. ∀[b:bag(T)].  only(b) ∈ T supposing single-valued-bag(b;T) ∧ 0 < #(b)
Proof
Definitions occuring in Statement : 
single-valued-bag: single-valued-bag(b;T)
, 
bag-only: only(bs)
, 
bag-size: #(bs)
, 
bag: bag(T)
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
bag-only: only(bs)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
and: P ∧ Q
Lemmas referenced : 
and_wf, 
single-valued-bag_wf, 
less_than_wf, 
bag-size_wf, 
nat_wf, 
bag_wf, 
single-valued-bag-hd
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
isect_memberEquality, 
because_Cache, 
universeEquality, 
independent_isectElimination, 
productElimination
Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].    only(b)  \mmember{}  T  supposing  single-valued-bag(b;T)  \mwedge{}  0  <  \#(b)
Date html generated:
2016_05_15-PM-02_49_07
Last ObjectModification:
2015_12_27-AM-09_35_13
Theory : bags
Home
Index