Step
*
2
of Lemma
es-prior-fixedpoints-causle
1. [Info] : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : E(X) ─→ E(X)@i
5. ∀x:E(X). f x c≤ x@i
6. e : E(X)@i
7. ∀e1:E(X). ((e1 < e)
⇒ (∀e':E(X). ((e' ∈ prior-f-fixedpoints(e1))
⇒ e' c≤ e1)))
8. ¬((f e) = e ∈ E)
9. e' : E(X)@i
10. (e' ∈ prior-f-fixedpoints(f**(e)))@i
⊢ e' c≤ e
BY
{ ((Assert f**(e) c≤ e BY Auto)⋅ THEN InstHyp [⌈f**(e)⌉;⌈e'⌉] (-5)⋅ THEN Try (Complete (Auto))) }
1
.....antecedent.....
1. [Info] : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : E(X) ─→ E(X)@i
5. ∀x:E(X). f x c≤ x@i
6. e : E(X)@i
7. ∀e1:E(X). ((e1 < e)
⇒ (∀e':E(X). ((e' ∈ prior-f-fixedpoints(e1))
⇒ e' c≤ e1)))
8. ¬((f e) = e ∈ E)
9. e' : E(X)@i
10. (e' ∈ prior-f-fixedpoints(f**(e)))@i
11. f**(e) c≤ e
⊢ (f**(e) < e)
2
1. [Info] : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : E(X) ─→ E(X)@i
5. ∀x:E(X). f x c≤ x@i
6. e : E(X)@i
7. ∀e1:E(X). ((e1 < e)
⇒ (∀e':E(X). ((e' ∈ prior-f-fixedpoints(e1))
⇒ e' c≤ e1)))
8. ¬((f e) = e ∈ E)
9. e' : E(X)@i
10. (e' ∈ prior-f-fixedpoints(f**(e)))@i
11. f**(e) c≤ e
12. e' c≤ f**(e)
⊢ e' c≤ e
Latex:
Latex:
1. [Info] : Type
2. es : EO+(Info)@i'
3. X : EClass(Top)@i'
4. f : E(X) {}\mrightarrow{} E(X)@i
5. \mforall{}x:E(X). f x c\mleq{} x@i
6. e : E(X)@i
7. \mforall{}e1:E(X). ((e1 < e) {}\mRightarrow{} (\mforall{}e':E(X). ((e' \mmember{} prior-f-fixedpoints(e1)) {}\mRightarrow{} e' c\mleq{} e1)))
8. \mneg{}((f e) = e)
9. e' : E(X)@i
10. (e' \mmember{} prior-f-fixedpoints(f**(e)))@i
\mvdash{} e' c\mleq{} e
By
Latex:
((Assert f**(e) c\mleq{} e BY Auto)\mcdot{} THEN InstHyp [\mkleeneopen{}f**(e)\mkleeneclose{};\mkleeneopen{}e'\mkleeneclose{}] (-5)\mcdot{} THEN Try (Complete (Auto)))
Home
Index