Nuprl Lemma : es-prior-interface-val-unique

[Info:Type]. ∀[es:EO+(Info)]. ∀[X:EClass(Top)]. ∀[e:E].
  ∀[p:E]
    prior(X)(e) ∈ supposing (p <loc e) ∧ (↑p ∈b X) ∧ (∀e'':E. ((e'' <loc e)  (p <loc e'')  (¬↑e'' ∈b X))) 
  supposing ↑e ∈b prior(X)


Proof




Definitions occuring in Statement :  es-prior-interface: prior(X) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-E: E assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q universe: Type equal: t ∈ T
Lemmas :  es-prior-interface-val es-locl_wf event-ordering+_subtype assert_wf in-eclass_wf all_wf es-E_wf not_wf es-prior-interface_wf0 eclass_wf top_wf event-ordering+_wf eclass-val_wf2 es-prior-interface_wf es-E-interface_wf decidable__es-locl es-locl-total

Latex:
\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[e:E].
    \mforall{}[p:E]
        p  =  prior(X)(e) 
        supposing  (p  <loc  e)  \mwedge{}  (\muparrow{}p  \mmember{}\msubb{}  X)  \mwedge{}  (\mforall{}e'':E.  ((e''  <loc  e)  {}\mRightarrow{}  (p  <loc  e'')  {}\mRightarrow{}  (\mneg{}\muparrow{}e''  \mmember{}\msubb{}  X))) 
    supposing  \muparrow{}e  \mmember{}\msubb{}  prior(X)



Date html generated: 2015_07_21-PM-02_45_42
Last ObjectModification: 2015_07_16-AM-10_05_43

Home Index