Nuprl Lemma : forkable-process_wf

[M,E:Type ─→ Type].
  (∀[g:∩T:Type. (T ─→ E[T])]. ∀[f:∩T:Type. (M[T] ─→ 𝔹)]. ∀[P:process(P.M[P];P.E[P])].
     (forkable-process(f;g;P) ∈ process(P.M[P];P.E[P]))) supposing 
     (Continuous+(T.E[T]) and 
     Continuous+(T.M[T]))


Proof




Definitions occuring in Statement :  forkable-process: forkable-process(f;g;P) process: process(P.M[P];P.E[P]) strong-type-continuous: Continuous+(T.F[T]) bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T isect: x:A. B[x] function: x:A ─→ B[x] universe: Type
Lemmas :  recprocess_wf continuous-id subtype_rel_wf bool_wf eqtt_to_assert process_wf strong-type-continuous_wf
\mforall{}[M,E:Type  {}\mrightarrow{}  Type].
    (\mforall{}[g:\mcap{}T:Type.  (T  {}\mrightarrow{}  E[T])].  \mforall{}[f:\mcap{}T:Type.  (M[T]  {}\mrightarrow{}  \mBbbB{})].  \mforall{}[P:process(P.M[P];P.E[P])].
          (forkable-process(f;g;P)  \mmember{}  process(P.M[P];P.E[P])))  supposing 
          (Continuous+(T.E[T])  and 
          Continuous+(T.M[T]))



Date html generated: 2015_07_17-AM-11_20_41
Last ObjectModification: 2015_01_28-AM-07_33_56

Home Index