Nuprl Lemma : forkable-process_wf
∀[M,E:Type ─→ Type].
  (∀[g:∩T:Type. (T ─→ E[T])]. ∀[f:∩T:Type. (M[T] ─→ 𝔹)]. ∀[P:process(P.M[P];P.E[P])].
     (forkable-process(f;g;P) ∈ process(P.M[P];P.E[P]))) supposing 
     (Continuous+(T.E[T]) and 
     Continuous+(T.M[T]))
Proof
Definitions occuring in Statement : 
forkable-process: forkable-process(f;g;P)
, 
process: process(P.M[P];P.E[P])
, 
strong-type-continuous: Continuous+(T.F[T])
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
isect: ∩x:A. B[x]
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
recprocess_wf, 
continuous-id, 
subtype_rel_wf, 
bool_wf, 
eqtt_to_assert, 
process_wf, 
strong-type-continuous_wf
\mforall{}[M,E:Type  {}\mrightarrow{}  Type].
    (\mforall{}[g:\mcap{}T:Type.  (T  {}\mrightarrow{}  E[T])].  \mforall{}[f:\mcap{}T:Type.  (M[T]  {}\mrightarrow{}  \mBbbB{})].  \mforall{}[P:process(P.M[P];P.E[P])].
          (forkable-process(f;g;P)  \mmember{}  process(P.M[P];P.E[P])))  supposing 
          (Continuous+(T.E[T])  and 
          Continuous+(T.M[T]))
Date html generated:
2015_07_17-AM-11_20_41
Last ObjectModification:
2015_01_28-AM-07_33_56
Home
Index