Nuprl Lemma : fpf-accum_wf

[A,C:Type]. ∀[B:A ─→ Type]. ∀[x:a:A fp-> B[a]]. ∀[y:C]. ∀[f:C ─→ a:A ─→ B[a] ─→ C].
  (fpf-accum(z,a,v.f[z;a;v];y;x) ∈ C)


Proof




Definitions occuring in Statement :  fpf-accum: fpf-accum(z,a,v.f[z; a; v];y;x) fpf: a:A fp-> B[a] uall: [x:A]. B[x] so_apply: x[s1;s2;s3] so_apply: x[s] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  fpf_wf list-subtype list_accum_wf l_member_wf
\mforall{}[A,C:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[x:a:A  fp->  B[a]].  \mforall{}[y:C].  \mforall{}[f:C  {}\mrightarrow{}  a:A  {}\mrightarrow{}  B[a]  {}\mrightarrow{}  C].
    (fpf-accum(z,a,v.f[z;a;v];y;x)  \mmember{}  C)



Date html generated: 2015_07_17-AM-11_10_29
Last ObjectModification: 2015_01_28-AM-07_44_33

Home Index