Step
*
1
of Lemma
fpf-accum_wf
1. A : Type
2. C : Type
3. B : A ─→ Type
4. d : A List
5. x1 : a:{a:A| (a ∈ d)} ─→ B[a]
6. y : C
7. f : C ─→ a:A ─→ B[a] ─→ C
⊢ accumulate (with value z and list item a):
f[z;a;x1 a]
over list:
d
with starting value:
y) ∈ C
BY
{ (AssertBY ⌈d ∈ {a:A| (a ∈ d)} List⌉ (BLemma `list-subtype` THEN Auto)⋅ THEN Auto) }
Latex:
1. A : Type
2. C : Type
3. B : A {}\mrightarrow{} Type
4. d : A List
5. x1 : a:\{a:A| (a \mmember{} d)\} {}\mrightarrow{} B[a]
6. y : C
7. f : C {}\mrightarrow{} a:A {}\mrightarrow{} B[a] {}\mrightarrow{} C
\mvdash{} accumulate (with value z and list item a):
f[z;a;x1 a]
over list:
d
with starting value:
y) \mmember{} C
By
(AssertBY \mkleeneopen{}d \mmember{} \{a:A| (a \mmember{} d)\} List\mkleeneclose{} (BLemma `list-subtype` THEN Auto)\mcdot{} THEN Auto)
Home
Index