Nuprl Lemma : fpf-ap_wf

[A:Type]. ∀[B:A ─→ Type]. ∀[f:a:A fp-> B[a]]. ∀[eq:EqDecider(A)]. ∀[x:A].  f(x) ∈ B[x] supposing ↑x ∈ dom(f)


Proof




Definitions occuring in Statement :  fpf-ap: f(x) fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) assert: b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  assert_wf deq-member_wf deq_wf list_wf l_member_wf assert-deq-member
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[eq:EqDecider(A)].  \mforall{}[x:A].
    f(x)  \mmember{}  B[x]  supposing  \muparrow{}x  \mmember{}  dom(f)



Date html generated: 2015_07_17-AM-09_16_17
Last ObjectModification: 2015_01_28-AM-07_52_14

Home Index