Nuprl Lemma : fpf-dom-type2

[X,Y:Type]. ∀[eq:EqDecider(Y)]. ∀[f:x:X fp-> Top]. ∀[x:Y].  {x ∈ supposing ↑x ∈ dom(f)} supposing strong-subtype(X;Y)


Proof




Definitions occuring in Statement :  fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) strong-subtype: strong-subtype(A;B) assert: b uimplies: supposing a uall: [x:A]. B[x] top: Top guard: {T} member: t ∈ T universe: Type
Lemmas :  fpf-dom-type
\mforall{}[X,Y:Type].  \mforall{}[eq:EqDecider(Y)].  \mforall{}[f:x:X  fp->  Top].  \mforall{}[x:Y].
    \{x  \mmember{}  X  supposing  \muparrow{}x  \mmember{}  dom(f)\}  supposing  strong-subtype(X;Y)



Date html generated: 2015_07_17-AM-09_16_02
Last ObjectModification: 2015_01_28-AM-07_52_21

Home Index