Step
*
of Lemma
fpf-dom-type2
∀[X,Y:Type]. ∀[eq:EqDecider(Y)]. ∀[f:x:X fp-> Top]. ∀[x:Y]. {x ∈ X supposing ↑x ∈ dom(f)} supposing strong-subtype(X;Y)
BY
{ (Unfold `guard` 0 THEN (InstLemma `fpf-dom-type` []) THEN Trivial) }
Latex:
\mforall{}[X,Y:Type]. \mforall{}[eq:EqDecider(Y)]. \mforall{}[f:x:X fp-> Top]. \mforall{}[x:Y].
\{x \mmember{} X supposing \muparrow{}x \mmember{} dom(f)\} supposing strong-subtype(X;Y)
By
(Unfold `guard` 0 THEN (InstLemma `fpf-dom-type` []) THEN Trivial)
Home
Index