Nuprl Lemma : fpf-dom-type
∀[X,Y:Type]. ∀[eq:EqDecider(Y)]. ∀[f:x:X fp-> Top]. ∀[x:Y].  (x ∈ X) supposing ((↑x ∈ dom(f)) and strong-subtype(X;Y))
Proof
Definitions occuring in Statement : 
fpf-dom: x ∈ dom(f)
, 
fpf: a:A fp-> B[a]
, 
deq: EqDecider(T)
, 
strong-subtype: strong-subtype(A;B)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
member: t ∈ T
, 
universe: Type
Lemmas : 
strong-subtype-l_member-type, 
fpf-domain_wf, 
member-fpf-domain, 
assert_wf, 
fpf-dom_wf, 
subtype-fpf3, 
top_wf, 
subtype_rel_self, 
strong-subtype_wf, 
fpf_wf, 
deq_wf
\mforall{}[X,Y:Type].  \mforall{}[eq:EqDecider(Y)].  \mforall{}[f:x:X  fp->  Top].  \mforall{}[x:Y].
    (x  \mmember{}  X)  supposing  ((\muparrow{}x  \mmember{}  dom(f))  and  strong-subtype(X;Y))
Date html generated:
2015_07_17-AM-09_16_00
Last ObjectModification:
2015_01_28-AM-07_52_31
Home
Index