Nuprl Lemma : strong-subtype-l_member-type

[A,B:Type].  ∀[L:A List]. ∀[x:B].  x ∈ supposing (x ∈ L) supposing strong-subtype(A;B)


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) list: List strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T strong-subtype: strong-subtype(A;B) cand: c∧ B subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] l_member: (x ∈ l) nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top and: P ∧ Q
Lemmas referenced :  int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties select_wf equal_wf exists_wf strong-subtype_wf list_wf subtype_rel_list l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut sqequalHypSubstitution productElimination thin applyEquality hypothesis sqequalRule lemma_by_obid isectElimination hypothesisEquality because_Cache independent_isectElimination universeEquality dependent_set_memberEquality lambdaEquality dependent_pairFormation cumulativity setElimination rename dependent_functionElimination natural_numberEquality unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[A,B:Type].    \mforall{}[L:A  List].  \mforall{}[x:B].    x  \mmember{}  A  supposing  (x  \mmember{}  L)  supposing  strong-subtype(A;B)



Date html generated: 2016_05_14-AM-07_40_37
Last ObjectModification: 2016_01_15-AM-08_35_59

Theory : list_1


Home Index