Step * of Lemma fpf-rename-cap

[A,C,B:Type]. ∀[eqa:EqDecider(A)]. ∀[eqc:EqDecider(C)]. ∀[r:A ─→ C]. ∀[f:a:A fp-> B]. ∀[a:A]. ∀[z:B].
  rename(r;f)(r a)?z f(a)?z ∈ supposing Inj(A;C;r)
BY
(((Auto THEN Unfold `fpf-cap` THEN SplitOnConclITE) THENA Try (Complete (Auto)))
   THEN Try ((SplitOnConclITE THEN Auto))
   THEN Try ((BLemma `fpf-rename-ap` THEN Auto))) }

1
.....wf..... 
1. Type
2. Type
3. Type
4. eqa EqDecider(A)
5. eqc EqDecider(C)
6. A ─→ C
7. a:A fp-> B
8. A
9. B
10. Inj(A;C;r)
⊢ a ∈ dom(rename(r;f)) ∈ 𝔹

2
.....falsecase..... 
1. Type
2. Type
3. Type
4. eqa EqDecider(A)
5. eqc EqDecider(C)
6. A ─→ C
7. a:A fp-> B
8. A
9. B
10. Inj(A;C;r)
11. ↑a ∈ dom(rename(r;f))
12. ¬↑a ∈ dom(f)
⊢ rename(r;f)(r a) z ∈ B

3
.....truecase..... 
1. Type
2. Type
3. Type
4. eqa EqDecider(A)
5. eqc EqDecider(C)
6. A ─→ C
7. a:A fp-> B
8. A
9. B
10. Inj(A;C;r)
11. ¬↑a ∈ dom(rename(r;f))
12. ↑a ∈ dom(f)
⊢ f(a) ∈ B


Latex:


\mforall{}[A,C,B:Type].  \mforall{}[eqa:EqDecider(A)].  \mforall{}[eqc:EqDecider(C)].  \mforall{}[r:A  {}\mrightarrow{}  C].  \mforall{}[f:a:A  fp->  B].  \mforall{}[a:A].
\mforall{}[z:B].
    rename(r;f)(r  a)?z  =  f(a)?z  supposing  Inj(A;C;r)


By

(((Auto  THEN  Unfold  `fpf-cap`  0  THEN  SplitOnConclITE)  THENA  Try  (Complete  (Auto)))
  THEN  Try  ((SplitOnConclITE  THEN  Auto))
  THEN  Try  ((BLemma  `fpf-rename-ap`  THEN  Auto)))




Home Index