Step
*
1
of Lemma
fpf-sub-set
1. A : Type
2. P : A ─→ ℙ
3. B : A ─→ Type
4. eq : EqDecider(A)
5. f : a:{a:A| P[a]}  fp-> B[a]
6. g : a:{a:A| P[a]}  fp-> B[a]
7. f ⊆ g
⊢ f ⊆ g
BY
{ (ParallelLast THEN (D 0 THENA Auto) THEN D 0) }
1
1. A : Type
2. P : A ─→ ℙ
3. B : A ─→ Type
4. eq : EqDecider(A)
5. f : a:{a:A| P[a]}  fp-> B[a]
6. g : a:{a:A| P[a]}  fp-> B[a]
7. ∀x:{a:A| P[a]} . ((↑x ∈ dom(f)) 
⇒ ((↑x ∈ dom(g)) c∧ (f(x) = g(x) ∈ B[x])))
8. x : A@i
9. ↑x ∈ dom(f)@i
⊢ (↑x ∈ dom(g)) c∧ (f(x) = g(x) ∈ B[x])
2
.....wf..... 
1. A : Type
2. P : A ─→ ℙ
3. B : A ─→ Type
4. eq : EqDecider(A)
5. f : a:{a:A| P[a]}  fp-> B[a]
6. g : a:{a:A| P[a]}  fp-> B[a]
7. ∀x:{a:A| P[a]} . ((↑x ∈ dom(f)) 
⇒ ((↑x ∈ dom(g)) c∧ (f(x) = g(x) ∈ B[x])))
8. x : A@i
⊢ ↑x ∈ dom(f) ∈ ℙ
Latex:
1.  A  :  Type
2.  P  :  A  {}\mrightarrow{}  \mBbbP{}
3.  B  :  A  {}\mrightarrow{}  Type
4.  eq  :  EqDecider(A)
5.  f  :  a:\{a:A|  P[a]\}    fp->  B[a]
6.  g  :  a:\{a:A|  P[a]\}    fp->  B[a]
7.  f  \msubseteq{}  g
\mvdash{}  f  \msubseteq{}  g
By
(ParallelLast  THEN  (D  0  THENA  Auto)  THEN  D  0)
Home
Index