Nuprl Lemma : fpf-sub_witness

[A:Type]. ∀[B:A ─→ Type]. ∀[eq:EqDecider(A)]. ∀[f,g:a:A fp-> B[a]].  (f ⊆  x,y. <Ax, Ax> ∈ f ⊆ g))


Proof




Definitions occuring in Statement :  fpf-sub: f ⊆ g fpf: a:A fp-> B[a] deq: EqDecider(T) uall: [x:A]. B[x] so_apply: x[s] implies:  Q member: t ∈ T lambda: λx.A[x] function: x:A ─→ B[x] pair: <a, b> universe: Type axiom: Ax
Lemmas :  assert_witness fpf-dom_wf subtype-fpf2 top_wf subtype_top assert_wf fpf-sub_wf deq_wf
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g:a:A  fp->  B[a]].    (f  \msubseteq{}  g  {}\mRightarrow{}  (\mlambda{}x,y.  <Ax,  Ax>  \mmember{}  f  \000C\msubseteq{}  g))



Date html generated: 2015_07_17-AM-09_17_08
Last ObjectModification: 2015_01_28-AM-07_51_35

Home Index