Nuprl Lemma : fpf-val_wf
∀[A:Type]. ∀[B:A ─→ Type]. ∀[f:a:A fp-> B[a]]. ∀[eq:EqDecider(A)]. ∀[x:A]. ∀[P:a:{a:A| ↑a ∈ dom(f)}  ─→ B[a] ─→ ℙ].
  (z != f(x) ==> P[x;z] ∈ ℙ)
Proof
Definitions occuring in Statement : 
fpf-val: z != f(x) ==> P[a; z]
, 
fpf-dom: x ∈ dom(f)
, 
fpf: a:A fp-> B[a]
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
assert_wf, 
fpf-dom_wf, 
subtype-fpf2, 
top_wf, 
subtype_top, 
fpf-ap_wf, 
deq_wf, 
fpf_wf
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[eq:EqDecider(A)].  \mforall{}[x:A].  \mforall{}[P:a:\{a:A|  \muparrow{}a  \mmember{}  dom(f)\} 
                                                                                                                                                              {}\mrightarrow{}  B[a]
                                                                                                                                                              {}\mrightarrow{}  \mBbbP{}].
    (z  !=  f(x)  ==>  P[x;z]  \mmember{}  \mBbbP{})
Date html generated:
2015_07_17-AM-09_17_04
Last ObjectModification:
2015_01_28-AM-07_51_28
Home
Index