Step
*
2
of Lemma
global-eo_wf
1. Info : Type
2. L : (Id × Info) List@i
3. n : ℕ||L||@i
4. x : ℕ||L||@i
5. x < n@i
6. (fst(L[x])) = (fst(L[n])) ∈ Id@i
7. v : Id@i
8. (fst(L[n])) = v ∈ Id@i
9. v1 : ℕn + 1@i
10. last_index(firstn(n;L);x.fst(x) = v) = v1 ∈ ℕ||firstn(n;L)|| + 1@i
11. (↑fst(firstn(n;L)[v1 - 1]) = v) ∧ (¬(∃x∈nth_tl(v1;firstn(n;L)). ↑fst(x) = v)) supposing 0 < v1@i
12. ¬(∃x∈firstn(n;L). ↑fst(x) = v) supposing v1 = 0 ∈ ℤ@i
13. v1 = 0 ∈ ℤ
⊢ ↓n < n
BY
{ (D -2 THEN Auto THEN D -1) }
1
1. Info : Type
2. L : (Id × Info) List@i
3. n : ℕ||L||@i
4. x : ℕ||L||@i
5. x < n@i
6. (fst(L[x])) = (fst(L[n])) ∈ Id@i
7. v : Id@i
8. (fst(L[n])) = v ∈ Id@i
9. v1 : ℕn + 1@i
10. last_index(firstn(n;L);x.fst(x) = v) = v1 ∈ ℕ||firstn(n;L)|| + 1@i
11. (↑fst(firstn(n;L)[v1 - 1]) = v) ∧ (¬(∃x∈nth_tl(v1;firstn(n;L)). ↑fst(x) = v)) supposing 0 < v1@i
12. v1 = 0 ∈ ℤ
⊢ (∃x∈firstn(n;L). ↑fst(x) = v)
Latex:
Latex:
1. Info : Type
2. L : (Id \mtimes{} Info) List@i
3. n : \mBbbN{}||L||@i
4. x : \mBbbN{}||L||@i
5. x < n@i
6. (fst(L[x])) = (fst(L[n]))@i
7. v : Id@i
8. (fst(L[n])) = v@i
9. v1 : \mBbbN{}n + 1@i
10. last\_index(firstn(n;L);x.fst(x) = v) = v1@i
11. (\muparrow{}fst(firstn(n;L)[v1 - 1]) = v) \mwedge{} (\mneg{}(\mexists{}x\mmember{}nth\_tl(v1;firstn(n;L)). \muparrow{}fst(x) = v)) supposing 0 < v1@i
12. \mneg{}(\mexists{}x\mmember{}firstn(n;L). \muparrow{}fst(x) = v) supposing v1 = 0@i
13. v1 = 0
\mvdash{} \mdownarrow{}n < n
By
Latex:
(D -2 THEN Auto THEN D -1)
Home
Index