Step
*
2
of Lemma
global-order-compat-combine
1. [Info] : Type
2. L1 : (Id × Info) List@i
3. ys : (Id × Info) List@i
4. y : Id × Info@i
5. L1 || ys
⇒ (∃L:(Id × Info) List
(L1 ≤ L
∧ (∃f:ℕ||ys|| ─→ ℕ||L||
((∀i,j:ℕ||ys||. (i < j
⇒ (f i < f j ∨ f j < ||L1||)))
∧ (∀j:ℕ||ys||
((ys[j] = L[f j] ∈ (Id × Info))
∧ (filter(λx.fst(x) = fst(ys[j]);firstn(j + 1;ys))
= filter(λx.fst(x) = fst(ys[j]);firstn((f j) + 1;L))
∈ ((Id × Info) List))))
∧ (∀x:ℕ||L||. (x < ||L1|| ∨ (∃i:ℕ||ys||. (x = (f i) ∈ ℤ))))))
∧ ys ≤ L, locally
∧ (∀i:Id
((filter(λx.fst(x) = i;L) = filter(λx.fst(x) = i;L1) ∈ ((Id × Info) List))
∨ (filter(λx.fst(x) = i;L) = filter(λx.fst(x) = i;ys) ∈ ((Id × Info) List))))))@i
6. L1 || ys @ [y]@i
⊢ ∃L:(Id × Info) List
(L1 ≤ L
∧ (∃f:ℕ||ys @ [y]|| ─→ ℕ||L||
((∀i,j:ℕ||ys @ [y]||. (i < j
⇒ (f i < f j ∨ f j < ||L1||)))
∧ (∀j:ℕ||ys @ [y]||
((ys @ [y][j] = L[f j] ∈ (Id × Info))
∧ (filter(λx.fst(x) = fst(ys @ [y][j]);firstn(j + 1;ys @ [y]))
= filter(λx.fst(x) = fst(ys @ [y][j]);firstn((f j) + 1;L))
∈ ((Id × Info) List))))
∧ (∀x:ℕ||L||. (x < ||L1|| ∨ (∃i:ℕ||ys @ [y]||. (x = (f i) ∈ ℤ))))))
∧ ys @ [y] ≤ L, locally
∧ (∀i:Id
((filter(λx.fst(x) = i;L) = filter(λx.fst(x) = i;L1) ∈ ((Id × Info) List))
∨ (filter(λx.fst(x) = i;L) = filter(λx.fst(x) = i;ys @ [y]) ∈ ((Id × Info) List)))))
BY
{ (D -2 THENA RepeatFor 3 (ParallelLast)) }
1
1. [Info] : Type
2. L1 : (Id × Info) List@i
3. ys : (Id × Info) List@i
4. y : Id × Info@i
5. ∀i:Id. filter(λx.fst(x) = i;L1) || filter(λx.fst(x) = i;ys @ [y])@i
6. i : Id@i
7. filter(λx.fst(x) = i;L1) ≤ filter(λx.fst(x) = i;ys @ [y]) ∨ filter(λx.fst(x) = i;ys @ [y]) ≤ filter(λx.fst(x) = i;L1)
⊢ filter(λx.fst(x) = i;L1) ≤ filter(λx.fst(x) = i;ys) ∨ filter(λx.fst(x) = i;ys) ≤ filter(λx.fst(x) = i;L1)
2
1. [Info] : Type
2. L1 : (Id × Info) List@i
3. ys : (Id × Info) List@i
4. y : Id × Info@i
5. L1 || ys @ [y]@i
6. ∃L:(Id × Info) List
(L1 ≤ L
∧ (∃f:ℕ||ys|| ─→ ℕ||L||
((∀i,j:ℕ||ys||. (i < j
⇒ (f i < f j ∨ f j < ||L1||)))
∧ (∀j:ℕ||ys||
((ys[j] = L[f j] ∈ (Id × Info))
∧ (filter(λx.fst(x) = fst(ys[j]);firstn(j + 1;ys))
= filter(λx.fst(x) = fst(ys[j]);firstn((f j) + 1;L))
∈ ((Id × Info) List))))
∧ (∀x:ℕ||L||. (x < ||L1|| ∨ (∃i:ℕ||ys||. (x = (f i) ∈ ℤ))))))
∧ ys ≤ L, locally
∧ (∀i:Id
((filter(λx.fst(x) = i;L) = filter(λx.fst(x) = i;L1) ∈ ((Id × Info) List))
∨ (filter(λx.fst(x) = i;L) = filter(λx.fst(x) = i;ys) ∈ ((Id × Info) List)))))@i
⊢ ∃L:(Id × Info) List
(L1 ≤ L
∧ (∃f:ℕ||ys @ [y]|| ─→ ℕ||L||
((∀i,j:ℕ||ys @ [y]||. (i < j
⇒ (f i < f j ∨ f j < ||L1||)))
∧ (∀j:ℕ||ys @ [y]||
((ys @ [y][j] = L[f j] ∈ (Id × Info))
∧ (filter(λx.fst(x) = fst(ys @ [y][j]);firstn(j + 1;ys @ [y]))
= filter(λx.fst(x) = fst(ys @ [y][j]);firstn((f j) + 1;L))
∈ ((Id × Info) List))))
∧ (∀x:ℕ||L||. (x < ||L1|| ∨ (∃i:ℕ||ys @ [y]||. (x = (f i) ∈ ℤ))))))
∧ ys @ [y] ≤ L, locally
∧ (∀i:Id
((filter(λx.fst(x) = i;L) = filter(λx.fst(x) = i;L1) ∈ ((Id × Info) List))
∨ (filter(λx.fst(x) = i;L) = filter(λx.fst(x) = i;ys @ [y]) ∈ ((Id × Info) List)))))
Latex:
Latex:
1. [Info] : Type
2. L1 : (Id \mtimes{} Info) List@i
3. ys : (Id \mtimes{} Info) List@i
4. y : Id \mtimes{} Info@i
5. L1 || ys
{}\mRightarrow{} (\mexists{}L:(Id \mtimes{} Info) List
(L1 \mleq{} L
\mwedge{} (\mexists{}f:\mBbbN{}||ys|| {}\mrightarrow{} \mBbbN{}||L||
((\mforall{}i,j:\mBbbN{}||ys||. (i < j {}\mRightarrow{} (f i < f j \mvee{} f j < ||L1||)))
\mwedge{} (\mforall{}j:\mBbbN{}||ys||
((ys[j] = L[f j])
\mwedge{} (filter(\mlambda{}x.fst(x) = fst(ys[j]);firstn(j + 1;ys))
= filter(\mlambda{}x.fst(x) = fst(ys[j]);firstn((f j) + 1;L)))))
\mwedge{} (\mforall{}x:\mBbbN{}||L||. (x < ||L1|| \mvee{} (\mexists{}i:\mBbbN{}||ys||. (x = (f i)))))))
\mwedge{} ys \mleq{} L, locally
\mwedge{} (\mforall{}i:Id
((filter(\mlambda{}x.fst(x) = i;L) = filter(\mlambda{}x.fst(x) = i;L1))
\mvee{} (filter(\mlambda{}x.fst(x) = i;L) = filter(\mlambda{}x.fst(x) = i;ys))))))@i
6. L1 || ys @ [y]@i
\mvdash{} \mexists{}L:(Id \mtimes{} Info) List
(L1 \mleq{} L
\mwedge{} (\mexists{}f:\mBbbN{}||ys @ [y]|| {}\mrightarrow{} \mBbbN{}||L||
((\mforall{}i,j:\mBbbN{}||ys @ [y]||. (i < j {}\mRightarrow{} (f i < f j \mvee{} f j < ||L1||)))
\mwedge{} (\mforall{}j:\mBbbN{}||ys @ [y]||
((ys @ [y][j] = L[f j])
\mwedge{} (filter(\mlambda{}x.fst(x) = fst(ys @ [y][j]);firstn(j + 1;ys @ [y]))
= filter(\mlambda{}x.fst(x) = fst(ys @ [y][j]);firstn((f j) + 1;L)))))
\mwedge{} (\mforall{}x:\mBbbN{}||L||. (x < ||L1|| \mvee{} (\mexists{}i:\mBbbN{}||ys @ [y]||. (x = (f i)))))))
\mwedge{} ys @ [y] \mleq{} L, locally
\mwedge{} (\mforall{}i:Id
((filter(\mlambda{}x.fst(x) = i;L) = filter(\mlambda{}x.fst(x) = i;L1))
\mvee{} (filter(\mlambda{}x.fst(x) = i;L) = filter(\mlambda{}x.fst(x) = i;ys @ [y])))))
By
Latex:
(D -2 THENA RepeatFor 3 (ParallelLast))
Home
Index